Skip to Main content Skip to Navigation
New interface
Book sections

Ontology Alignment Using Web Linked Ontologies as Background Knowledge

Thomas Hecht 1 Patrice Buche 2, 3 Juliette Dibie-Barthelemy 1 Liliana L. Ibanescu 1 Cassia Trojahn dos Santos 4 
2 GRAPHIK - Graphs for Inferences on Knowledge
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CRISAM - Inria Sophia Antipolis - Méditerranée
4 IRIT-MELODI - MEthodes et ingénierie des Langues, des Ontologies et du DIscours
IRIT - Institut de recherche en informatique de Toulouse
Abstract : This paper proposes an ontology matching method for aligning a source ontology with target ontologies already published and linked on the Linked Open Data (LOD) cloud. This method relies on the refinement of a set of input alignments generated by existing ontology matching methods. Since the ontologies to be aligned can be expressed in several representation languages with different levels of expressiveness and the existing ontology matching methods can only be applied to some representation languages, the first step of our method consists in applying existing matching methods to as many ontology variants as possible. We then propose to apply two main strategies to refine the initial alignment set: the removal of different kinds of ambiguities between correspondences and the use of the links published on the LOD. We illustrate our proposal in the field of life sciences and environment.
Document type :
Book sections
Complete list of metadata

Cited literature [25 references]  Display  Hide  Download
Contributor : Juliette Dibie Connect in order to contact the contributor
Submitted on : Friday, June 15, 2018 - 12:17:51 PM
Last modification on : Monday, November 7, 2022 - 2:44:09 PM
Long-term archiving on: : Sunday, September 16, 2018 - 1:23:36 PM


AKDM_6_paper 2_Hecht14.pdf
Files produced by the author(s)



Thomas Hecht, Patrice Buche, Juliette Dibie-Barthelemy, Liliana L. Ibanescu, Cassia Trojahn dos Santos. Ontology Alignment Using Web Linked Ontologies as Background Knowledge. Fabrice Guillet; Bruno Pinaud; Gilles Venturini. Advances in Knowledge Discovery and Management, 665, Springer, pp.207-227, 2017, Studies in Computational Intelligence, 978-3-319-45762-8. ⟨10.1007/978-3-319-45763-5_11⟩. ⟨hal-01508810⟩



Record views


Files downloads