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ABSTRACT

The recent Food and Agricultural Organization/World Health Organization/United Nations University expert consultations on protein requirements
and quality have emphasized the need for the new Digestible Indispensable Amino Acid Score (DIAAS), as a measure of protein quality. This requires
human measurements of the true ileal digestibility of individual indispensable amino acids (IAAs) until the end of the small intestine. Digestibility
is measured using standard oro-ileal balance methods, which can only be achieved by an invasive naso-ileal intubation in healthy participants or
fistulation at the terminal ileum. Significant efforts have been made over the last 2 decades to develop noninvasive or minimally invasive methods
to measure IAA digestibility in humans. The application of intrinsically labeled (with stable isotopes like 13C, 15N, and 2H) dietary proteins has
helped in circumventing the invasive oro-ileal balance techniques and allowed the differentiation between endogenous and exogenous protein.
The noninvasive indicator amino acid oxidation (IAAO) technique, which is routinely employed to measure IAA requirements, has been modified
to estimate metabolic availability (a sum of digestibility and utilization) of IAA in foods, but provides an estimate for a single IAA at a time and
is burdensome for participants. The recently developed minimally invasive dual isotope tracer method measures small intestinal digestibility of
multiple amino acids at once and is suitable for use in vulnerable groups and disease conditions. However, it remains to be validated against
standard oro-ileal balance techniques. This review critically evaluates and compares the currently available stable isotope-based protein quality
evaluation methods with a focus on the digestibility and metabolic availability measurements in humans. In view of building a reliable DIAAS
database of various protein sources and subsequently supporting protein content claims in food labeling, a re-evaluation and harmonization of the
available methods are necessary. Adv Nutr 2021;00:1–13.

Statement of Significance: This review is the first of its kind that exhaustively reports on, and critically compares, stable isotope-based
and direct measurements of amino acid digestibility/bioavailability in humans, using the ileal balance, dual isotope, and IAAO methods. The
review provides details on the principles, advantages, and drawbacks of different methods, as well as details on efficient approaches of intrinsic
labeling of food proteins; in addition, this review details all available human measurements of IAA digestibility and metabolic availability of
food proteins.

Keywords: protein quality, stable isotopes, protein digestibility, metabolic availability, intrinsic labeling, oro-ileal balance, dual isotope tracer
technique, indicator amino acid oxidation

Introduction
Dietary protein provides nitrogen and amino acids (AAs),
particularly indispensable amino acids (IAAs), which are re-
quired in adequate quantity and proportion for the synthesis
of protein and other nitrogen- and AA-related compounds
with various structural and biological functions in the body

(1, 2). The quality of dietary protein source has been
directly assessed by measuring the utilization and retention
of dietary nitrogen and AAs in the body, but this approach
is difficult due to the complexity of the physiological and
metabolic processes of protein digestion, absorption, and
metabolic utilization of AAs (2–5). Alternatively, the quality
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of a dietary protein is defined by its ability to meet age-
specific nitrogen and IAA requirements for growth and
maintenance. Therefore, it can be assessed by the widely
accepted chemical scoring approach that compares the IAA
pattern of a protein with the age-specific IAA requirements
corrected for protein or IAA digestibility, through 2 simple
indexes, the Protein Digestibility Corrected Amino Acid
Score (PD-CAAS) and the Digestible Indispensable Amino
Acid Score (DIAAS) (2, 5–7). A critical aspect of these
indexes is measurement of protein and IAA digestibility to
correct the chemical score. Several methods for measuring
digestibility are currently available, where stable isotope
labeling, especially intrinsically labeled dietary proteins with
15N, 2H, and 13C tracers, has been used. This review critically
evaluates and compares the methodological concerns of the
stable isotope-based protein quality evaluation methods with
a focus on the digestibility and metabolic availability (MA)
measurements in humans and their applicability in various
pathophysiological conditions.

Concepts of chemical scoring and correction for
digestibility
The quality of a dietary protein can be assessed by its
chemical score, which is a ratio of its IAA content to the
age-specific IAA requirement pattern (4, 6, 7). The lowest
chemical score of a food is corrected for the crude protein
digestibility to obtain a protein quality metric called the PD-
CAAS (Supplementary Material 1). Although practical and
widely used, the PD-CAAS has been subject to criticism,
mainly for using a single fecal nitrogen digestibility value for
correction. Indeed, fecal digestibility is not always a good
proxy of digestibility, especially for proteins of low digestibil-
ity (8), possibly due to the contribution of colonic microbes
to nitrogen transactions via the fermentation of undigested
protein entering the colon. As the PD-CAAS is truncated
to 100% this does not allow indication of the potential of
a high-quality protein to optimize the AA composition of
food mixtures with low protein quality. The advantages and
limitations of the PD-CAAS have been extensively reviewed
previously (9–11). To overcome the concerns related to PD-
CAAS, the World Health Organization/Food and Agriculture
Organization/United Nations University (WHO/FAO/UNU)
expert consultations recommended that the chemical score of
each IAA should be corrected for their true ileal digestibility
values measured in humans, and the lowest score thus
obtained be termed the DIAAS (Supplementary Material 1)
(4, 6). Unlike the PD-CAAS, a score of >100% for a single
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food or mixed diets in the DIAAS is not truncated to indicate
the potential of a high-quality protein to complement low-
quality protein in mixed diets. Both the DIAAS and PD-
CAAS can be used to inform protein content claims in
food labeling. Since measuring true ileal AA digestibility
in humans is invasive and expensive, pigs and alternatively
rats are used to determine the ileal digestibility coefficients
for regulatory purposes (4, 6, 12). The reliability of the
PD-CAAS and DIAAS is also dependent on factors such
as the determination of AA composition, the reference AA
profile, the nitrogen to protein conversion factor, and the
complexities and uncertainties around the measurements of
dietary protein/IAA digestibility.

Digestibility issues: fecal versus ileal digestibility,
apparent versus true digestibility, protein versus AA
digestibility
The simplest and long-standing method of measuring pro-
tein and AA digestibility has been the oro-fecal balance
method (5, 7). Although noninvasive, a major concern of
the fecal digestibility measurements is the hindgut microbial
modification of the undigested dietary nitrogen exiting the
terminal ileum. As dietary nitrogen and AA absorption
essentially occurs in the small intestine, the ileal digestibility,
measured at the terminal ileum is considered to be a more
accurate assay. The ileo-fecal differences in nitrogen (2–
9%) and AA digestibility (0.4–15%) have been reported
in monogastric animals (including humans) for highly
digestible proteins (13, 14), and these differences were
reported to be as high as 20% in rats for less digestible
plant proteins possibly due to microbial fermentation of
dietary fiber (15) and undigested AA during colonic transit
(16).

The traditional assessment of digestibility is based on
the measurements of total nitrogen and AA losses (endoge-
nous and exogenous) in digesta and is termed “apparent”
digestibility (9, 17, 18). Different methods have been used to
measure endogenous losses; the advantages and limitations
of these methods have been previously discussed (17, 19).
When apparent digestibility is corrected for endogenous
protein and AA losses measured by feeding with protein-
free diets (20, 21) or by differentiating between endogenous
and exogenous losses using intrinsically labeled proteins
(22), it is termed “true” and “real” digestibility, respectively
(Supplementary Material 1) (19). For simplicity, the term
“true” is often used in place of “real” digestibility.

An additional concern in the assessment of dietary protein
digestibility is the uncertainty associated with assuming over-
all protein (nitrogen) digestibility as a proxy for individual
AA digestibility. A modest variation in ileal digestibility
of IAAs has been reported in humans (14, 20, 22, 23)
ranging from 89% (threonine) to 95% (lysine) with a nitrogen
digestibility of 94% in soy protein isolate (23). Considerable
differences have been observed in less digestible whole-plant
protein sources, such as pea cultivars, where ileal digestibility
of IAAs varied from 75% (tryptophan) to 89% (methionine)
with a nitrogen digestibility of 76% in pigs (24), suggesting
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TABLE 1 Approaches used for intrinsic labeling of proteins to measure protein and AA digestibility in humans

Proteins Label Form of label Method of administration

Milk and meat from
ruminants

15N 15N ammonium sulphate • Perfusion in rumen (22, 23, 26, 28)
• Oral administration of dose (23, 78)

2H 2H-labeled crystalline AAs • Intravenous infusion in jugular vein (98)
Deuterium oxide (2H2O) • Oral administration of dose dissolved in

water (38)
• Feeding with 2H-labeled fodder (43)

13C 13C labeled crystalline AAs • Intravenous infusion in jugular vein (87, 91,
99)

Egg and chicken
meat

15N, 2H, and 13C 15N-, 2H-, and 13C- labeled crystalline
AAs

• Oral administration of dose dissolved in
water (59)

• Diets supplemented with labeled AAs
(100–103)

Plant proteins 15N 15N ammonium nitrate, 15N potassium
nitrate, 15N ammonium chloride

• Fertilization of soil with labeled salt (29, 35,
104)

• Foliar spraying before flowering (23, 30, 80,
105)

2H Deuterium oxide (2H2O) • Pulse dosing at flowering (37, 59)
13C 13CO2 • Atmospheric labeling (32, 45)

AA, amino acid.

the need to measure the digestibility of each IAA to evaluate
the quality of dietary protein.

Intrinsic labeling of dietary protein for measuring
protein and AA digestibility in humans
Intrinsically labeled dietary proteins with stable isotopes
have been used to measure true or real digestibility for the
last 25 y. Intravenous, oral, or ruminal administration of
single/multiple labeled free AAs or 15N ammonium sulphate
have been used for labeling milk (25, 26), eggs (27), and meat
(28), whereas deuterium oxide (2H2O) and 15N fertilizers
(29–31), and more rarely 13CO2 (32), have been used to
intrinsically label plant proteins (Table 1). For milk proteins,
the intravenous administration of labeled AAs is more
efficient compared with oral administration as it avoids losses
due to fermentation in the rumen, feed refusals, and impaired
absorption due to the feed matrix. However, due to the
high cost, the protein is generally labeled with 1 (33) or
2 AAs (34). Another consideration relates to the type of
tracer being used, which depends on the method (direct
or indirect) of determining digestibility. For instance, 15N-
labeled milk, bovine meat, and plant proteins (lupin, soybean,
wheat, rapeseed, and pea) have been widely used to measure
ileal nitrogen and AA digestibility using direct ileal balance
methods in humans (23, 28, 30, 31, 35, 36). However, due to
the exchange and loss of 15N during transamination of AAs
(Supplementary Material 1), the use of this label has major
limits especially for the indirect methods which measure
plasma appearances of labeled AAs (25, 37).

Goat milk protein has been previously labeled with 2H by
administering 2H2O to a lactating goat (38). In this method,
labeling occurs by the exchange between the hydrogen atoms
at the α-H position of AAs with 2H from enriched body water
during the transamination reaction, with a small quantity of
2H labeled AAs being synthesized de novo (39–42). Similar
to 15N, AAs can lose the α-2H label during the same reaction,

underestimating the absorbed 2H AAs (39). 2H-labeled milk
and meat could also be produced by feeding with 2H-labeled
fodders, obtained by watering fodder plants with 2H2O (43).
Since plants are autotrophs and synthesize AAs de novo, this
would lead to 2H labeling in multiple random positions of
the AAs, including α-H (44). Although use of 2H2O enables
efficient labeling of plant proteins, labeling milk using 2H-
labeled fodder is cumbersome, expensive, and leads to lower
enrichments in milk particularly for the limiting AAs in the
plant.

The transamination losses of the 2H label can be ad-
dressed by using correction factors determined by controlled
experiments (37) (Table 2, Supplementary Material 1).
Transamination correction factors (FTCF) have also been
proposed for 15N but experimental validation is necessary
due to their high intraindividual variability and the estimates
differed with the amount of protein in test meals (25). This
could be attributed to the higher potential for exchange of
15N, owing to a smaller pool of amino nitrogen compared
with hydrogen in the body water (25, 37). Therefore, the
best isotopic label to use is 13C, as this is not modified by
transamination or other metabolic processes, and intrinsic
labeling could be achieved by oral administration of 13C-
labeled AAs to animals, or by growing plants/algae in a

TABLE 2 Transamination correction factors for IAAs using 2H1

IAA 2H label

Methionine 1.058 ± 0.005
Phenylalanine 1.053 ± 0.006
Threonine 1.016 ± 0.002
Lysine 1.002 ± 0.002
Leucine 1.081 ± 0.002
Isoleucine 1.070 ± 0.004
Valine 1.048 ± 0.003
IAA, indispensable amino acid.
1Values are mean ± SD, n = 6; Reproduced with permission from Devi et al. (37).
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FIGURE 1 Schematic representation of the principle of the oro-ileal balance method to measure ileal AA digestibility with (A) intubated
healthy volunteers or with (B) ileostomized patients using labeled protein. With the intubation method, the volunteers are equipped with
a triple lumen naso-ileal tube. One lumen is dedicated to inflate a balloon at the end of the tube to facilitate the migration of the tube
through the intestinal tract. When the tube is at the terminal ileum, a perfusion of PEG (unabsorbable marker) is started through the
second lumen, in order to evaluate intestinal flow by the slow marker method. The test meal containing intrinsically 15N-labeled test
protein undergoes digestion and absorption and ileal effluents containing nonabsorbed dietary AAs are continuously collected from the
third lumen during the 8-h postprandial period. In ileostomates, where the colon and rectum have been partially or totally removed and
the terminal ileum exteriorized, the ileal effluents are directly collected into the pouch. The digestibility of each AA is determined by the
ratio of the absorbed AA to the intake. AA, amino acid; PEG, polyethylene glycol.

13CO2-enriched environment (32, 45). Although 13C labeling
is feasible for animal proteins, this might not be the case
for plant proteins, as it is difficult and expensive to obtain
the high grain yields required for digestibility protocols (46).
Overall, it is important to choose an appropriate tracer for
intrinsic labeling of dietary proteins based on the method
used for measuring digestibility with careful consideration of
the labeled atom position to avoid possible label losses due to
metabolic rearrangements.

Direct method for true ileal protein and AA digestibility:
oro-ileal balance method
The classical and standard method for measuring true ileal
protein and AA digestibility entails collection of the digesta
at the terminal ileum during the postprandial period to
determine the amount of undigested nitrogen or/and AA.
In humans, this requires invasive procedures unless studied
specifically in ileostomates (20). In healthy volunteers with
an intact intestine, a radio-opaque, triple lumen tube is intro-
duced through the nose and allowed to migrate through the
intestine by peristaltic motility until the leading tip reaches

the ileum (Figure 1). The location of the tube can be assessed
through radiography. After test meal administration, ileal
effluents are continuously collected for 8 h through one
of the lumens. The infusion of a nonabsorbable marker
(polyethylene glycol 4000, PEG-4000) into the intestine
through another lumen of the tube allows determination of
the total ileal effluent flow during this period. Combined
with the administration of 15N intrinsically labeled dietary
protein, this method provides accurate estimates of nitrogen
or AA digestibility at the ileal level and has been in use
for over 25 y. A PubMed search for related studies was
conducted with key terms of “ileal digestibility” OR “ileal
protein digestibility” OR “ileal amino acid digestibility” AND
“human” and the digestibility coefficients of animal and plant
proteins processed by different methods are provided in
Supplementary Table 1. The true ileal digestibility of AAs
ranged from 91% (glycine) to 99% (tyrosine) in milk protein,
and from 89% (threonine) to 97% (tyrosine) in soy protein
(23). The true ileal AA digestibility of unlabeled whey protein
and zein was recently reported with low values for zein,
ranging from 24% for cysteine to 64% for glutamine (21).
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Ileal digestibility of casein, whey protein, soy isolate, and
concentrate, were also determined in ileostomates and were
found to be high, varying from 97% to 100% (20).

As summarized in Table 3, the procedure in ileostomates
is relatively noninvasive, and is convenient for a crossover
design; with the collection of total digesta, the use of
nonabsorbable markers could be avoided. However, these
patients might suffer from different gut disorders and
their ileum will have morphological and microbiological
modifications (47, 48); hence the measured digestibility
values might differ from healthy volunteers. Additionally, the
recruitment capacity of patients with a permanent ileostomy
is limited. The naso-ileal intubation model is limited by the
invasiveness of the procedure and a variable tolerance of
the tube among subjects as well as interindividual variability
for the tube migration. The placement of the tube could
cause a concertinaing effect on the small intestine (49)
which might confound the di- and tri-peptidase digestion
and subsequent AA absorption, however, this needs to be
confirmed. Use of nonabsorbable markers could introduce
errors in measuring the ileal effluent flow rate (50). Lastly,
the recycling of the isotope from test proteins in the
endogenous protein leads to a minor underestimation (∼1%)
of ileal nitrogen digestibility (50). Moreover, neither model
is suitable for routine digestibility measurements in humans,
particularly in vulnerable age groups and with pathophys-
iological conditions. However, long-term experience in the
implementation of this technique allows for the minimiza-
tion of bias and the provision of accurate and repeatable
values.

Indirect methods for measuring AA digestibility
Dual isotope tracer method.
A minimally invasive dual isotope tracer technique to
measure true ileal AA digestibility has been recently devel-
oped to overcome the invasiveness and complexities around
collecting ileal digesta in direct methods (37). In this method,
2 differently intrinsically labeled proteins, a test protein (2H
or 15N) and a reference protein (13C) of predetermined
digestibility are simultaneously fed in a plateau feeding
protocol. The ratio of plasma appearance of AAs from
test to reference proteins at plateau with respect to the
meal administered and corrected for AA digestibility of the
reference protein allows determination of the true ileal AA
digestibility of the test protein (Figure 2) (6, 37). Since the
method measures plasma appearance of AAs to represent
protein digestion and AA absorption throughout the small
intestine, the term true AA digestibility (TAAD) will be used
henceforth to differentiate from direct methods that measure
digestibility at the terminal ileum. The method assumes
that AAs from both test and reference proteins undergo
similar first pass and splanchnic metabolism and enter a
common pool after digestion and absorption; the ratio of
test to standard AAs from this pool cancels out this uptake
and metabolism. Another assumption of the method is the
equivalent absorption of differently labeled AAs from the test
and reference proteins, which is reasonable as stable isotopic

differentiations are not known (51, 52). An advantage of
using the plateau feeding protocol is the attainment of a
steady isotopic plasma enrichment which negates the effect
of slow or fast response proteins in the test meal that could
influence the rate of AA metabolism (53). This pattern of
feeding is not habitual and AA digestibility could differ when
administered as a bolus meal as is habitually consumed.
However, the reserve capacity of pancreatic proteases is much
higher (∼10–15 times) than the volume required for protein
digestion under normal physiological conditions, suggesting
that the digestibility estimates might not drastically vary with
different meal patterns (54, 55), although an effect on protein
of low digestibility cannot be excluded and must be evaluated.

The viable options of reference proteins could be U-13C-
labeled proteins that are commercially available and com-
monly consumed, such as spirulina protein (Supplementary
Table 1), which is well digested and the constituent AAs
have a stable isotopic carbon backbone (37). Although animal
source proteins could also serve as good reference proteins,
the production of intrinsically labeled casein or egg or meat
protein in high quantities will be expensive. The digestibility
of reference protein can be determined against a free AA mix
(2H or 15N labeled) which is considered to be representative
of a completely digested protein (37). The use of U-2H is
preferred over an 15N-labeled AA mixture, as the exchange
of 15N during transamination does not allow tracing back to
the original carbon skeleton of the AA. Although a U-13C-
free AA mixture can also be used as a reference, a protein
versus protein comparison for the test and reference has
been preferred since the rates of absorption, metabolism,
and utilization of AAs derived from peptides are different
from those of free AAs (56, 57). Here too, the label must
be carefully chosen as the phenylalanine digestibility of 15N-
labeled spirulina was found to be 15% lower than [U]-13C-
labeled spirulina (37, 58). Additionally, the TAAD of legume
protein (mung bean) has been found to be similar with the
use of either U-13C spirulina protein or U-13C free AAs
as the reference, in healthy individuals (59) (Table 4) in a
plateau feeding protocol, but this needs to be tested in a bolus
feeding or a shorter repeated meal protocol. A mixture of free
labeled AAs would also be a preferred choice for patients with
impaired digestion and absorption functions such as those
with cystic fibrosis, environmental enteropathy, and others
(58, 60, 61). Another advantage is that the high digestibility
of free AAs ensures a lower interindividual variability, as
digestibility has an inverse association with variability, and
thus provides more reliable reference values (62). The TAAD
of U-13C spirulina had a mean IAA digestibility of ∼85% (37)
and this has been used as a correction factor while measuring
the digestibility of different test proteins in the same
population. This might introduce an error when measuring
protein digestibility in a different group of individuals, as the
mean variability of IAA digestibility in spirulina was found to
be ∼ 6% ranging from 3% for threonine and 12% for lysine
(37). This could be addressed by measuring the reference
protein digestibility in the same participant using a crossover
design.

Protein quality evaluation using stable isotopes 5
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A PubMed search was carried out to retrieve TAAD
values of different proteins using keywords of “ileal AA
digestibility” OR “ileal digestibility” AND “dual isotope
tracer” AND “humans,” and is presented in Supplementary
Table 1. High-quality proteins such as egg white, whole
boiled egg, and chicken meat using the dual isotope method
have reported digestibility estimates of 87%, 90%, and
92%, respectively (63), which were similar to digestibility
estimates obtained by the direct ileal balance method (27,
28); however, plant protein digestibility values were lower
than other studies (64, 65). This could be attributed to the
differences in the test meal matrix between these experiments
and type of processing of the test proteins (Supplementary
Table 1). The interindividual variability of the digestibility
estimates around the mean is reasonably small (overall
CV <6%) when measured in apparently healthy humans. A
major advantage of the dual isotope tracer method (Table 3)
is enabling AA digestibility determination in habitually con-
sumed diets in vulnerable populations of infants, children,
pregnant women, and older adults, and in pathophysiological
conditions.

Indicator AA oxidation slope ratio method.
This method was developed using the principles of the
traditional slope ratio growth assay in which growth and feed
efficiency (by carcass weight) in animals have been measured
to estimate bioavailability of an IAA in a dietary protein
(66). Although the slope ratio growth assay is an absolute
standard of estimating IAA bioavailability, the requirement
for several groups of animals for bioavailability assessment
of a single IAA, prolonged adaptation to a test IAA intake,
and invasiveness precludes its routine application in humans
(66). The indicator amino acid oxidation (IAAO) slope
ratio method is a noninvasive adaptation of the growth
assay, in which oxidation of an orally administered 13C-
labeled “indicator” IAA is used as a proxy to assess the
contribution of an unlabeled test dietary IAA to protein
synthesis; the higher the oxidation of indicator IAA, the lower
the protein synthesis (67). This method estimates the MA
(includes digestibility, absorption, and utilization) of a single
selected IAA in a dietary protein. It does so by comparing
the oxidation response slopes of the labeled indicator IAA
(usually 1-13C phenylalanine) to graded intakes of the
selected test IAA from a test protein at subrequirement
concentrations, to that of a reference crystalline IAA mixture
(Figure 3). The IAAO slope ratio method has been validated
against the growth assay with a mean difference of 4–7%
for the MA estimates of lysine in differently processed pea
proteins (68).

A key condition of the method is that the IAAO response
must be linearly and inversely related to the test IAA
intake concentrations, which requires the intakes to be
at subrequirement concentrations, preferably <60% of the
requirements (6). Due to the known high variability of IAA
requirements, of ∼25–40% (69), this critical condition of
linearity could be challenging to satisfy, as has been observed
previously, where the oxidation of indicator was reported

Protein quality evaluation using stable isotopes 7



FIGURE 2 Schematic representation of the principle of the dual isotope tracer method to measure small intestinal AA digestibility. The
test meal containing intrinsically 2H/15N-labeled test protein (yellow and blue circles) and uniformly 13C-labeled reference protein (red
circles) undergoes digestion. After absorption and first-pass splanchnic extraction, AAs from both the proteins enter the systemic
circulation. The plasma appearance of individual AAs from 2H/15N-labeled test protein is compared with that of 13C-labeled reference
protein of known digestibility with respect to the test meal to determine the small intestinal AA digestibility in the test proteins. AA, amino
acid; Digstref, digestibility of reference protein.

to plateau, when it should not have, at subrequirement
concentrations of test IAA intakes (70). Further, it has been
argued that a highly digestible protein (casein and hydrolyzed
casein) could be a better control, as food-derived peptides
have been shown to influence gut protein metabolism,
stimulate gut endogenous AA secretions, and are better
absorbed than free AAs (56, 57, 71).

An advantage of the IAAO slope ratio method is that it
is noninvasive and analytically simple, involving only the
measurement of 13CO2 enrichment in noninvasive breath
samples (Table 3). It does not require intrinsically labeled
test proteins and is relatively cost-effective, particularly for
mixed meals where all food protein sources in a mixed
meal would need to be intrinsically labeled. The method
provides reproducible results and is sensitive in the detection
of postprocessing (heat treatment) reduction in MA as has
been shown for lysine in peas, rice, and milk (68, 72–74).
A PubMed search using key terms of “amino acid metabolic
availability” OR “amino acid bioavailability” AND “indicator
amino acid oxidation” AND “humans,” was performed to
obtain MA of IAAs in different proteins, as measured in

humans, and the results are presented in Supplementary Ta-
ble 1. The method does not report interindividual variability
of the MA estimates, however, the CV appears to range from
15% to 52% across the studies when the SE of the slope
was considered (70, 72, 73, 75). Nevertheless, the method
provides reasonable MA estimates for foods and as expected,
has been found to be lower than true ileal IAA digestibility
or TAAD values (23, 43, 59, 72–74), except for rice,
which could be due to the differences in milling processes
(73, 75, 76).

The IAAO slope ratio method provides MA of a single
IAA through multiple experiments with 3–4 graded intakes
of test IAA in a repeated measures study design, which
requires significant time, subject compliance, and meticulous
control of their body composition, physiological status, and
dietary intakes for the study duration. Moreover, the method
provides a measure of metabolic utilization of a dietary
protein. With rigorous application, the noninvasive IAAO
slope ratio method has the potential to determine MA of
limiting IAAs of dietary proteins in habitually consumed
meal preparations in humans.
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TABLE 4 True AA digestibility of mung bean with spirulina and
crystalline AAs as reference proteins using dual isotope tracer
method in healthy adults1,2

True AA digestibility (%)
IAA MB3,4 MB-13C AA3,4

Methionine 52.2 ± 7.2 48.7 ± 6.3
Phenylalanine 73.4 ± 6.3 74.6 ± 1.4
Threonine 42.5 ± 1.2 42.7 ± 3.2
Lysine 63.0 ± 5.4 69.3 ± 3.4
Leucine 67.5 ± 3.2 69.3 ± 5.0
Iso-leucine 75.8 ± 2.6 76.6 ± 5.0
Valine 67.8 ± 6.0 66.7 ± 5.1
Mean IAA 63.2 ± 1.5 64.0 ± 2.4

1Values are mean ± SD; AA, amino acid; IAA, indispensable amino acid; MB, mung
bean true AA digestibility referenced to spirulina protein (n = 6); MB-13C AA, mung
bean small intestinal IAA digestibility referenced to standard 13C IAA mixture (n = 5).
2Reproduced with permission from Kashyap et al. (59)
3Paired t-test between MB compared with MB-13CAA (n = 5), no significant differences
were observed in IAA digestibility between the groups.
4No significant difference in true AA digestibility between MB compared with MB-13C
AA.

Other methods of protein quality evaluation using stable
isotopes.
In addition to the direct and indirect methods detailed above,
isotopic methods allow the determination of postprandial
utilization of dietary proteins and their contribution to
protein synthesis. The net postprandial protein utilization
(NPPU) can be determined using intrinsically 15N-labeled
dietary proteins, based on the difference between total
ingested dietary protein corrected by real/true ileal protein
digestibility, and dietary nitrogen transfer to ammonia/urea
by deamination (Supplementary Material 1). Using double
labeled 15N-13C eggs, metabolic loss of AAs was ∼18%
as assessed by 13CO2 and 15N recovery for an 8-h period
(77). Nevertheless, there are almost no studies using 13C-
labeled protein, due to the labeling cost as mentioned above.
The NPPU estimates have been determined for different
protein sources in adults with adequate protein adaptation
and ranged from 72 to 78% for high-quality proteins, such as
milk (78, 79) or soy protein (80), to 63–66% for lower quality
proteins such as wheat (31).

The intravenous infusion of an isotopically labeled AA
also allows the determination of dietary postprandial protein
utilization (PPU) (81). In this method, leucine oxidation is
measured in the postabsorptive and postprandial phases to
determine leucine balance in relation to ingested leucine and
a continuous infusion of 1-13C leucine (81, 82) (Supplemen-
tary Material 1). Dietary protein utilization was calculated
by converting leucine balance to nitrogen balance in relation
to nitrogen intake (82, 83). Depending on the feeding
protocol, the PPU of wheat protein was 61–68%, which was
consistent with NPPU estimates. However, the PPU of milk
(93–100%) was found to be considerably higher than the
NPPU estimates (79, 82, 84). The approach has not been
used to determine digestibility of dietary proteins due to
the theoretical assumptions and uncertainties associated with
splanchnic sequestration of labeled AA, tracer recycling,
issues with measurement of precursor enrichment, and the

assumed conversion factor of leucine to nitrogen content in
tissue proteins (6).

Another method uses the combined ingestion of intrin-
sically labeled protein with a single AA (1-13C,15N or 2H5
phenylalanine, or 1-13C leucine) and an intravenous infusion
of the same AA but differently labeled (2H5 phenylalanine, or
2H3 or 1-13C leucine) to measure endogenous and exogenous
AA fluxes, and the contribution of exogenous AAs to whole-
body and skeletal muscle protein synthesis (85). Postprandial
protein handling and metabolism have been previously
measured in high-quality animal and plant proteins (53, 86–
91). The method can be used to assess the effect of protein
source, protein load, exercise and meal timing on whole-
body protein synthesis as well as muscle protein anabolism
when associated with muscle biopsies (89, 92, 93). Although
the technique could be used as a proxy for measuring
protein quality, the use of a single intrinsically labeled test
protein could underestimate the rate of plasma appearance
of exogenous AAs due to the dilution and recycling of the
tracer in the splanchnic bed and gastrointestinal tract (94).
Additionally, in comparison to some of the other methods
described in this review, it is invasive and not suitable for
routine use.

Conclusion
The 2014 FAO expert consultation on protein quality evalua-
tion recommended the use of DIAAS as the preferred metric
for assessing the protein quality of individual foods and
mixed diets (6). This requires the determination of individual
AA digestibility at the ileal level which, until recently, was
impossible to achieve without an invasive intubation or
exteriorization of the intestine. However, together with the
use of stable isotopes to intrinsically label dietary proteins,
this is the only direct method that exists and has allowed
accurate and precise digestibility estimates over the past
25 y and can be considered as a reference method for
assessing protein and AA digestibility. Stable isotopes have
been used as key tools in the field of protein and AA
digestibility investigation and more largely protein quality,
including in the development of minimal or noninvasive
methods. The recently developed minimally invasive dual
isotope tracer method can measure TAAD of almost all
AAs in a single trial from dietary proteins in habitually
consumed meal preparations in different age groups and
shows promise to be applicable to vulnerable age groups
and in those with pathophysiological conditions. However,
the method is relatively new and needs to be validated
against conventional assays which measure digestibility at
the terminal ileum. The IAAO slope ratio method provides
MA of one IAA at a time and demands significant time and
compliance input from subjects in a crossover study design,
which limits its use in vulnerable groups. Nevertheless,
it is of interest due to its noninvasiveness and analytical
simplicity.

Although efforts have been made to determine protein
and AA digestibility of different foods, the agreement
between the methods has not been rigorously evaluated by

Protein quality evaluation using stable isotopes 9



FIGURE 3 Schematic representation of the principle and application of the IAAO method to estimate MA of limiting AAs in test proteins.
(A) Represents the digestion, absorption, and metabolic handling of free or protein-derived unlabeled nonlimiting (blue circles),
limiting/test (green circles), and 13C-labeled indicator IAA (red circles). (B) Subjects are provided with increasing intakes of limiting IAA
(green circles) at the subrequirement concentration from a reference AA mixture or a combination of reference AA mixture and test
protein with constant intake of 13C-labeled indicator IAA (red circles) across the study days in a repeated measures design. With increasing
intake of limiting/test IAA (green circles), the incorporation of 13C-labeled indicator IAA (red circles) into tissue protein synthesis increases
with the subsequent reduction in its oxidation, which is measured as 13CO2 in breath. The IAAO response slopes are obtained by
measuring both reference AA mixture and test protein at the same concentrations of limiting/test IAA intakes. The MA of limiting/test IAA
in a test protein is computed by comparing the estimated IAAO response slope of test protein to the estimated slope of reference AA
mixture, which is assumed to have 100% MA. AA, amino acid; IAA, indispensable amino acid; IAAO, indicator amino acid oxidation; MA,
metabolic availability.

measuring the digestibility of the same protein source across
methods. This is critical for harmonizing the digestibility
values obtained from different methods considering the
variable effect of the food matrix, of processing, and
species-specific differences (particularly for plant proteins)
on protein digestibility (95–97). As a start, the mean IAA
and lysine digestibility of similarly processed whole-milk
powders were found to be comparable across the methods
(Supplementary Table 1), however, this needs to be expanded
for other protein sources with low (<75%) and medium
(<85%) digestibility. Until then, the values of true ileal
protein and IAA digestibility/MA of different foods that
are presented in Supplementary Table 1, could serve as a

guide for field-level use. Further studies are also required to
establish the acceptable limits of interlaboratory variability in
true ileal protein and IAA digestibility/MA measurements of
foods.

With the development of DIAAS, the re-evaluation and
harmonization of these methods is important for supporting
protein content claims of food labeling systems across
countries. Moreover, efforts to determine the protein and
AA digestibility in relevant food groups and combinations
using minimally invasive methods need to be continued
to build into the expanding database of DIAAS and to
inform the agricultural supplementary nutrition programs
and industrial regulatory frameworks and policies.
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