Skip to Main content Skip to Navigation
Journal articles

Machine learning analysis of pregnancy data enables early identification of a subpopulation of newborns with ASD

Abstract : To identify newborns at risk of developing ASD and to detect ASD biomarkers early after birth, we compared retrospectively ultrasound and biological measurements of babies diagnosed later with ASD or neurotypical (NT) that are collected routinely during pregnancy and birth. We used a supervised machine learning algorithm with a cross-validation technique to classify NT and ASD babies and performed various statistical tests. With a minimization of the false positive rate, 96% of NT and 41% of ASD babies were identified with a positive predictive value of 77%. We identified the following biomarkers related to ASD: sex, maternal familial history of auto-immune diseases, maternal immunization to CMV, IgG CMV level, timing of fetal rotation on head, femur length in the 3rd trimester, white blood cell count in the 3rd trimester, fetal heart rate during labor, newborn feeding and temperature difference between birth and one day after. Furthermore, statistical models revealed that a subpopulation of 38% of babies at risk of ASD had significantly larger fetal head circumference than age-matched NT ones, suggesting an in utero origin of the reported bigger brains of toddlers with ASD. Our results suggest that pregnancy follow-up measurements might provide an early prognosis of ASD enabling pre-symptomatic behavioral interventions to attenuate efficiently ASD developmental sequels.
Document type :
Journal articles
Complete list of metadata

https://hal.inrae.fr/hal-03191441
Contributor : David Makowski <>
Submitted on : Thursday, April 8, 2021 - 2:50:42 PM
Last modification on : Tuesday, June 15, 2021 - 2:57:34 PM

Citation

Hugues Caly, Hamed Rabiei, Perrine Coste-Mazeau, Sebastien Hantz, Sophie Alain, et al.. Machine learning analysis of pregnancy data enables early identification of a subpopulation of newborns with ASD. Scientific Reports, Nature Publishing Group, 2021, 11 (1), ⟨10.1038/s41598-021-86320-0⟩. ⟨hal-03191441⟩

Share

Metrics

Record views

90

Files downloads

36