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a b s t r a c t

Data generated by analytical instruments, such as spectrometers, may contain unwanted variation due to
measurement mode, sample state and other external physical, chemical and environmental factors.
Preprocessing is required so that the property of interest can be predicted correctly. Different correction
methods may remove specific types of artefacts while still leaving some effects behind. Using multiple
preprocessing in a complementary way can remove the artefacts that would be left behind by using only
one technique. This article summarizes the recent developments in new data preprocessing strategies
and specifically reviews the emerging ensemble approaches to preprocessing fusion in chemometrics. A
demonstration case is also presented. In summary, ensemble preprocessing allows the selection of
several techniques and their combinations that, in a complementary way, lead to improved models.
Ensemble approaches are not limited to spectral data but can be used in all cases where preprocessing is
needed and identification of a single best option is not easily done.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In analytical chemistry, multivariate data are generally acquired
from different measurement techniques for qualitative and quan-
titative analysis [1,2]. The techniques can range from implementing
miniature near-infrared (NIR) spectrometers [3,4] for measuring
optical properties to high end complex and costly techniques such
as liquid or gas chromatography -mass spectrometry (LC-MS or GC-
MS) or even up to their multidimensional implementations (e.g.,
GCxGC/MS) [5,6]. As a consequence, the data generated by these
techniques can range from simple multivariate spectral data (as in
the case of NIR) to multi-mode chromatograms (in the case of LC/
GC-MS). However, what the data from multiple techniques have
in common is that they all suffer from artefacts (unwanted varia-
tion) [7]. The presence of these artefacts can be ascribed to several
causes, such as the measurement modality, instrumental drifts,
.

r B.V. This is an open access article
sample state and other external physical, chemical and environ-
mental factors [8]. As an example, one could think of NIR mea-
surements performed in diffuse reflection mode on highly
scatteringmaterials [9]. In such a case, the acquired NIR spectrawill
be a combination of absorption and scattering characteristics. The
absorption phenomenon will translate to the presence of peaks at
specific wavelengths whereas the scattering will manifest itself as
additive effects, mainly modifying the baseline, and multiplicative
effects which dramatically affect the linear models. Additionally,
when the collected spectra are used for calibration, the attenuation
in the signals brought by scattering may also affect model quality,
not only in terms of predictive accuracy but also of interpretability
[10]. As a consequence, it is obvious that, under the above-
mentioned circumstances, one should always perform scatter
correction in order for the spectra to resemble as closely as possible
the absorption profile so that the corresponding models are based
on such information only [10,11].

Data preprocessing, in general, is required to correct for scat-
tering, baselines changes, peak shifts, noises, missing values and
several other artefacts so that the “true” chemically-relevant
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/
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Abbreviations

AsLS Asymmetric Least Square
DoE Design of Experiments
GAPLS Genetic Algorithm Partial Least Squares
KDR Known Data Regression
LC/GC-MS Liquid Chromatography/Gas Chromatography

Mass Spectrometry
MCR Multivariate Curve Resolution
MSC Multiplicative Scatter Correction
NIR Near Infrared
NMR Nuclear Magnetic Resonance
OPLS Orthogonal Partial Least Squares
PAT Process Analytical Technologies
PCR Principal Component Regression
PLSR Partial Least Square Regression
RNV Robust Normal Variate
SNR Signal to Noise
SNV Standard Normal Variate
SPORT Sequential Preprocessing Through

Orthogonalization
SS-DAC Soft Sensor Development, Assessment and

Comparison
TSR Trimmed Scores Regression
VSN Variable Sorting for Normalization
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underlying structure can be highlighted and/or, if required, the
property of interest can be predicted correctly [7,10,12]. Thanks to
the extensive chemometric researches in the last decades, several
preprocessing techniques are now available [8]. However, there are
no clear rules to decide when to use a specific preprocessing
technique, if a single technique could be enough and, if not, which
techniques to combine and how (e.g., in what order) [7,13]. For
instance, several techniques are available to perform scatter
correction, such as standard normal variate (SNV), multiplicative
scatter correction (MSC) and their several variants, calculation of
2nd derivative (which, depending on the algorithm, requires
setting additional parameters), or the recently introduced variable
sorting for normalization (VSN) [8]. Accordingly, to identify which
technique could be the best for her/his data, the user is often
required to explore all the available options. Moreover, if there is
the need to associate scatter correction with other operations, e.g.,
noise removal and scaling, the number of combinations to be
explored increases exponentially. To overcome this problem,
several approaches related to the identification of the best pre-
processing and/or of their optimal combination were also devel-
oped [14e17]. In this context, until recently, most of the attention in
chemometrics was limited to finding the best preprocessing [15] or
their optimal combination [14] and almostminimal focus was given
to understanding what complementary information the different
preprocessing techniques carry.

Preprocessing methods always carry with them the risk of also
removing relevant chemical information or variation that is related
to the property of interest [7,13,14]. On the other hand, different
preprocessing techniques may remove certain types of artefacts
while still leaving some other effects behind. Using multiple pre-
processing in a complementary way can remove the artefacts that
would be left behind by using only one technique. Thanks to recent
developments in ensemble [18,19] and data fusion methods [20],
the complementary fusion of multiple preprocessing techniques is
now possible. The complementary fusion of preprocessing tech-
niques and their combinations has twomajor benefits: the first one
2

is that it allows all the complementary information linked to
different preprocessing techniques and their combinations to be
used synergistically to developmodels, and the second one is that it
takes the user out of the loop of searching for the best pre-
processing and their combinations. Several recent works have
shown that the complementary fusion of preprocessing techniques
can lead to high-quality models [19e21].

This article summarizes the recent developments in new data
preprocessing strategies and specifically reviews the emerging
ensemble approaches to preprocessing fusion in chemometrics. A
demonstration case of using an ensemble preprocessing fusion
approach called sequential preprocessing through orthogonaliza-
tion (SPORT) is also presented.

2. Artefacts in data: background causes

Several artefacts may be present in multivariate data obtained
from analytical techniques. Broadly, they can be classified in five
main categories, i.e., missing data, noise, baselines shifts, multi-
plicative effects and peak shifts. Each artefact has its own back-
ground cause(s), which, in the case of spectroscopy, can range from
a human error during measurements to a complex interaction of
light with the physical structure of the sample. In the remainder of
this Section, the various typologies of artefacts and their causes will
be briefly discussed.

Missing data refers to the lack of one or more entries in the
matrix containing the experimental data. The presence of missing
data can be for several reasons, such as values outside the instru-
ment range, instrument malfunctioning at a certain point of time,
communication failure between the instrument and the digital
controller, multiple sensors deployed for the same task but at
different sampling rates, saturation of the signal intensity and
instrumental errors during data acquisition [22]. Apart from these
technical reasons, sometimes the missing values are due to human
errors, and arise in cases when repeating a part of the measure-
ments may be impossible or too expensive [23]. In Fig. 1, the
occurrence of missing data is represented by the red dotted line,
which, compared to the original spectrum (solid blue line), lacks
certain spectral bands.

Noise is the unwanted disturbances in a signal [24] and its
causes can be traced back to, e.g., the sensitivity of the detectors of
instruments or, in the case of optical spectroscopy, the excitation
source (electromagnetic light source). The presence of noise is
usually expressed as low signal-to-noise (SNR) ratio. Most often the
noise is visually identifiable by plotting the dataset. An example of
noisy signal is shown in Fig.1 as a solid purple line: compared to the
original signal (solid blue), which does not present any noise, the
perturbed spectrum is characterized by a disturbance at the
extreme wavelengths. Such a type of noise is commonly encoun-
tered in NIR data due to the low detectivity of the sensors at the
extreme frequencies.

Variables with huge intensity differencesmay be encountered
in several analytical platforms such asmass spectrometry and NMR.
However, such huge differences in signal intensities are rarely
encountered in the domain of optical spectroscopy. These are not
really artefacts but actually intrinsic characteristics of such data
sets. In such cases, the aim is always to transform/normalize the
variables so to span a comparable range of variability.

Baselines are structured background effects (“continuous” and
low frequency) and the reasons for their occurrence in the signals
are, in general, dependent on the specific measurement technique
involved. For example, in Raman spectroscopy, the main cause of a
non-zero baseline is the background fluorescence of the samples,
whereas in NIR, the baselines are caused by stray light and the
interaction of the light with the particles or droplets, leading to
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scattering; on the other hand, in chromatography, the baseline
corresponds to the detector response when only the mobile phase
emerges from the column. The presence of a linear baseline is
exemplified as a solid yellow line in Fig. 1, where it is evident that
such an effect results in an increasing difference in intensity with
respect to the original signal (solid blue).

Multiplicative effects are artefacts whose extent depends lin-
early on the intensity of the original signal. They may be caused,
among others, by physical phenomena, such as light scattering in
the case of optical spectroscopy, or by a non-completely repro-
ducible sample manipulation or presentation (e.g., volume of
injected sample in chromatography or dilution in nuclear magnetic
resonance). In the case of optical techniques, multiplicative effects
are caused by the forced deviation of the photons from a straight
trajectory by localized non-uniformities present in the samples. In
chromatography, multiplicative effects are related to the very slight
variations in the amount of sample being injected and analyzed in
the different runs [25]. In NMR-based metabolomics, especially in
the analysis of urine, multiplicative effects result from unspecific
variations of the overall concentrations of samples, due to different
dilutions. In Fig. 1, the dashed green line represents a signal with
multiplicative effects: when compared to the original profile (solid
blue line), it is evident that the differences in intensity are more
pronounced for those wavelengths where the unperturbed spec-
trum has a higher signal.

Peak shifts are horizontal displacements in the signals which,
otherwise, should ideally be aligned (i.e., present maxima at the
same frequencies, in case of spectroscopy, or retention times, in the
case of chromatography). Accordingly, there are two main types of
shifts, namely temporal and spectral shifts. Temporal shifts are
common in chromatography where they can be due to the deteri-
oration or aging of the stationary phase, matrix effects, temperature
changes, changes in the mobile phase composition, instrumental
drift, interactions between analytes, fluctuations in pressure and
flow rates and presence of gas bubbles [26]. Spectral shifts are
Fig. 1. Example of several simulated artefacts for visible and near-infrared data. Data with no
(solid cyan line), noise at extreme bands (solid purple line) and missing data (dotted red li

3

common in techniques like optical spectroscopy, NMR and mass
spectrometry, where they can be due to variations in temperature,
pressure, viscosity and pH, but also for instrumental reasons [26].
An example of peakmisalignment is shown in Fig.1 where the solid
cyan line is the shifted version of the original spectrum (solid blue).
When such effect is present, peak alignment is fundamental for
optimal modelling.

3. Objectives of data preprocessing

The global objective of data preprocessing is to remove the
unwanted variability or effects from the signal so that the useful
information related to the property(-ies) of interest can be used
for efficient modelling. The specific objectives of the preprocess-
ing techniques are dependent on the type of artefacts to be dealt
with. Following the same classification reported in the previous
section, in the case of missing data, the objective of preprocessing
is to estimate the missing values using data imputation ap-
proaches, a detailed description of which can be found in a
dedicated review [23]. In the case of noisy data, the objective is to
remove/reduce the noise, and this can be achieved through
several approaches such as manual removal of the noisy part of
the signal or time series, use of filtering algorithms [27] or
smoothing functions such as polynomial fitting and spline inter-
polation [28], and data reconstruction approaches such as prin-
cipal/independent component reconstruction [8] or wavelet
threshold and reconstruction [29]. In the case of the presence of a
non-zero baseline, the objective is to identify the type/order of the
baseline, estimate it accordingly, and then subtract it from the
overall signal. Baseline modelling/removal can be achieved with
approaches such as offset corrections, detrending, asymmetric
least square (AsLS) and several others [8]. In the case of multi-
plicative effects, the objective is to remove/reduce the global in-
tensity differences in the signal either by the use of model-free
approaches, such as normalization techniques [8], or with model-
unwanted effect (solid blue line), multiplicative effects (dashed green line), peak shifts
ne), and baseline shift (solid brown line).
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based strategies which use a reference signal to estimate the
multiplicative effects, in order to remove them by mathematical
operations [30]. In the case of peak shifts, the objective is to align
the peaks along either the spectral or the time domain. The basic
steps of peak alignment are to identify a reference signal (signal
with respect to which other signals are aligned) and to warp the
experimental profiles along the time or spectral axis, so to be as
matched as possible to the reference. In order for alignment to be
effective, the target signal should present as many of the peaks
present in the experimental profile as possible. Moreover, the
extent of matching between the signals and the target can be
limited to key peaks, which can be identified by means of ap-
proaches such as bucketing or binning and Landmark peak se-
lection, or evaluated across the whole signal. Several approaches
to perform peak alignment are available and can be found in a
recent review [26]. A further detailed summary of all the most
commonly used chemometric preprocessing techniques can be
found elsewhere [8], together with the MATLAB codes for their
implementation.

4. Recent advances in preprocessing methods

Preprocessing plays a fundamental role in chemometrics.
However, there is no preprocessing technique which can be
considered as a gold standard or, anyway, be blindly applied to any
data, irrespective of their nature; on the contrary, preprocessing
techniques are usually chosen based on the data source and the
specific artefacts. A summary of the preprocessing techniques
which, across the years, have become well established in chemo-
metrics and are most frequently used, can be found elsewhere [8].
Alongside with these, new preprocessing techniques, which are
summarized in Table 1, have been developed over the past decade.
The details reported in Table 1 point out how new strategies have
emerged for the correction of all the types of artefacts previously
discussed, i.e. for missing data imputation, noise removal, baseline
correction, multiplicative effect correction and peak alignment. As
far as the imputation of missing data is concerned, new methods
have been proposed, considering the problems of both model
exploitation and model building in the presence of missing data. In
particular, to deal with model building in the scenario of missing
data, methods which combine known data regression (KDR) and
trimmed scores regression (TSR) with principal component
regression (PCR) or partial least squares regression (PLSR) have
emerged [31]. A free toolbox to implement several novel strategies
for missing data imputation can be found and accessed in Ref. [22].

In the case of noise removal, the new emerging trend is the use
of autoencoders [32]. An autoencoder is a type of bottleneck arti-
ficial neural network that is used to learn efficient data coding in an
unsupervised manner. Indeed, an autoencoder is a multi-layer
feed-forward network, with at least three hidden layers, the in-
termediate of which, that is the one providing the mapping, being
characterized by a rather small number of neurons. The network is
trained using both as inputs and as targets the original signals, so
that, through the bottleneck architecture, the autoencoder extracts
non-linear salient features from the data, leaving the noise
unmodeled. The encoded data can then be decoded to reconstruct
the original signal but without noise [32]. Another advancement in
noise removal is related to the possibility of automating the task:
for this purpose, automatic threshold selection for shearlet co-
efficients was proposed in Ref. [29].

Baseline correction methods can broadly be divided into three
subgroups, i.e., polynomial fitting, wavelet transformations and
derivatives. The new direction to baseline correction involves
combining wavelet decomposition, signal differentiation and
baseline fitting with penalized least squares [33]. The new strategy
4

combining multiple baseline correction approaches shows that the
different techniques carry complementary information and their
combination leads to improved removal of baselines from Raman
spectra [33]. Some new developments were related to the
advancement of adaptive reweighting strategies to support poly-
nomial weighting and penalized least squares [34,35]. The main
benefit of the adaptive reweighing approach is that it does not
require user intervention and prior information. The multiple
spectra baseline fitting approach is also new and uses multiple
signals to infer their common characteristics in order to learn
slowly varying baselines [36]. The main aim of the multiple spectra
baseline correction approach is to learn baselines that performwell
on the corresponding spectra and then co-regularize the choices by
penalizing the disagreements among the baseline corrected spectra
based on asymmetrical least squares [36]. Even if it doesn't involve
the actual correction of the signals, it is worth mentioning that
another approach based on Tikhonov regularization was recently
proposed to deal with the presence of a non-constant baseline in
the framework of regression model building [37]. In particular, the
approach is based on using the Tikhonov regularization extra terms
in the linear calibration problem to force the regression coefficients
to be orthogonal to the direction(s) of the sample space spanned by
the baseline effects [37].

As far as the correction of multiplicative effects is concerned, the
major development was related to the introduction of the possi-
bility of weighting the individual variables according to how likely
they are to be affected by the unwanted contribution to be
removed. In this context, a new method called variable sorting for
normalization (VSN), which utilizes a random consensus strategy to
estimates the weights before implementing normalizations in a
data-driven, hypothesis-free fashion, was recently proposed [38].
Also are emerging local preprocessing approaches, which divide
the signal into parts and apply locally (i.e. individually on each of
the parts) existing preprocessing methods, such as SNV [39]. Other
new methods, which combine different approaches to correct the
multiplicative effects, have also been reported [40]. Robust variants
of traditional preprocessing methods are also gaining importance
due to their capability to deal with outliers, leading to optimized
preprocessing of data [16]. For peak alignment, an increasing
number of approaches are appearing in the literature, adopting the
concept of point matching inspired by the computer vision domain
[41,42]. Another emerging trend is the combination of data
decomposition methods, such as multivariate curve resolution
(MCR), with wrapping approaches [43,44]. Recent studies show
that nowadays the focus is on automated methods which do not
require reference signals and perform global alignments to deal
with data rich in features [41,42,45e47].

5. Preprocessing selection approaches and their limitations

The choice of preprocessing techniques can greatly affect the
model performance and preprocessing selection by the user can
very often be sub-optimal as the user cannot directly explore all
preprocessing techniques and their combinations. In the beginning,
the selection of the preprocessing approach was based on trial and
error. However, with the advancement in the computing power and
the evolution of chemometrics, in recent years, several approaches
for the selection and optimization of preprocessing strategies have
been proposed (Table 2). For example, a novel approach based on
orthogonal PLS (OPLS) was proposed to evaluate the performances
of individual preprocessing techniques and their combination. The
OPLS-based approach decomposes the data into common and
distinct variation, allowing to evaluate which part of the original
information is retained and which new patterns emerge in the data
after a preprocessing technique is applied [15]. On the other hand,



Table 1
Summary of the strategies for preprocessing developed in the past decade in chemometrics.

Artefacts type Techniques Background principle Novel features References

Missing data � Known data regression with principal
components regression (KDR-PCR) or
partial least squares regression (KDR-
PLSR)

� Trimmed scores regression with
principal components regression
(TDR-PCR) or partial least squares
regression (TDR-PLSR)

� A particular case of generalized
regression model

� The regressionmodel is fitted and the
missing part is estimated

� Loadings obtained from PCA or PLSR
depending on the method
implemented

� Allows model development and
application in presence of missing
data

� Both data visualization and
predictive analysis in presence of
missing data is possible

[22,31]

Maximum likelihood PCA based data
imputation

� Assigns high variance to the missing
values prior to PCA allowing to fit
PCA model by disregarding the
missing points

� Allows PCA in presence of missing
values

[48]

Noise removal Autoencoders � Bottleneck neural network for the
extraction of non-linear features
(non-linear data compression)

� Automatic noise removal [32]

Shearlet-based denoising � Automatic thresholding for shearlet
coefficients

� Reconstruction of signal after
thresholding allows noise removal

� Automatic preprocessing
� Suited for imaging spectroscopy data

[29]

Baselines correction Continuous wavelet transform þ peak
width estimation by signal to noise
ratio enhancing
derivative þ background fitting using
penalized least squares with binary
masks

� A three-step process involving accu-
rate detection of peak position, fol-
lowed by peak width estimation and
lastly background fitting using
penalized least squares using binary
masks

� Does not require any preprocessing
for transformation of spectra into
the wavelet space

� Combines wavelet transformation,
derivatives and polynomial fitting

[33]

Adaptive reweighing scheme for
polynomial fitting and penalized least
squares

� iteratively weights are changes for
sum squares errors (SSE) between
the fitted baseline and original
signals, and theweights of the SSE are
obtained adaptively using the
difference between the previously
fitted baseline and the original
signals

� Automated approach to baseline
correction

[35]

Multispectra baseline correction with
asymmetric least squares

� Uses multiple signals to infer the
common characteristics to learn
slowly varying baselines

� Fast and outputs multiple baselines
simultaneously

[36]

Tikhonov regularization � Uses regularization to force the
regression coefficients to be
orthogonal to the directions of
multiplicative effects

� Direct regression modelling by
removing the influence of baselines

[37]

Multiplicative effects
correction

Variable sorting for normalization
(VSN)

� Estimates weights for variables based
on severity of multiplicative effects

� Weights are estimated automatically
� Weights can be incorporated into

traditional normalization techniques
such as SNV, MSC etc.

[38]

Local standard normal variate (LSNV) � Splits the signal into intervals and
performs SNV separately for each
local part

� Easy to implement as it just consists
in the local application of a standard
preprocessing

[39]

First derivative þ simple spectral ratio
(FD-SR), Linear regression
correction þ simple spectral ratio (LRC-
SR), Orthogonal spatial
projection þ simple spectral ratio (OPS-
SR)

� Uses two steps
� The first one corrects for additive

effects using either first derivative,
linear regression correction or
orthogonal spatial projection

� The second step uses simple spectral
ratio for the correction of
multiplicative effects

� Can estimate separate additive and
multiplicative correction factors for
each signal unlike tradition methods
which use a general statistics such as
mean and standard deviation for
correction

[40]
[40]
[40]

Group aggregating normalization
(GAN)

� Uses group assignment to estimate
the dilution factor to perform the
normalization

� Developed specifically to deal with
the multiplicative effects due to
dilution

[49]

Robust standardization, SNV, MSC,
Detrending, offset correction

� Incorporates median and mean
absolute deviation to traditional
preprocessing techniques

� Removes the effect of outliers during
the corrections

[16]

Peaks alignments Multivariate curve
resolution þ correlation optimized
warping (MCR þ COW)

� At first, reduces complexity of the
signals by curve resolution and later
uses COW to align the profiles.

� Minimizes the risk of aligning non-
corresponding information

[43]
[44]

Automatic time shift alignment (ATSA) Three step process:
� Automatic baseline correction and

peak detection to provide useful
chromatographic information

� Preliminary alignment through
adaptive segment partition to
correct alignment for the entire
chromatogram

� Suited for chromatographic data
� Parameters such as peak information,

segment size are automatically
optimized

[50]

(continued on next page)
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Table 1 (continued )

Artefacts type Techniques Background principle Novel features References

� Precise alignment based on test
chromatographic peak information
to accurately align time shifts

Coherent point drift peak alignment � Uses the point matching algorithm
from computer vision domain

� Useful for 2D chromatography-mass
spectrometry data

� Global peak alignment
� Useful for dense data, i.e., rich in

features

[51]

BiPACE 2D � Introduces a similarity measure for
comparing peaks based on the
closeness of their barycenters in 2D
TIC images and the angle or inner
product between the binned MS
profiles.

� All possible pairwise similarities
between peaks in two (or more) 2D
chromatograms are estimated to
identify best matching signals

� Useful for 2D chromatography- mass
spectrometry data

� Suitable for chromatographic data
with increasing number of peaks

� Does not require user defined
reference spectrum

[47]

Smith-Waterman peak alignment � Combines the Smith-Waterman local
alignment with mass spectral
similarity

� Eliminates the need for detection of
landmark peaks and usage of
retention time transformation

� Automated

[41]

Optimal peak alignment with mixture
similarity measure

� Uses mixture similarity by employing
peak distance and the spectral
similarity measures

� Does not require pre-defined win-
dow to operate

[46]

Distance and spectrum correlation
optimization alignment (DISCO)

� Landmark peaks of samples are
mapped to landmark peaks of the
reference using Euclidean distance to
calculate similarity and correlation
coefficient.

� Later, local interpolation is applied to
non-landmark peaks to correct
distortion

� Allows on the fly alignment reducing
memory usage

[45]

Global peak alignment with point
matching algorithm

� Extracts feature peaks in the signal
and then searches globally the
matching peaks

� Global alignment
� Suitable for homogeneous as well as

heterogeneous data

[42]
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DoE-based selection of the optimal combination of preprocessing
techniques, where the effect of different preprocessing techniques
is explored by considering each family of methods as a factor,
whose levels are the individual techniques, also gained attention
[14,52]. In particular, the DoE approach presented in Refs. [14]
considers preprocessing selection as a 4 stage process involving the
sequential application of baseline correction, scatter correction,
noise removal and scaling. However, by doing so, it does not allow
more than one preprocessing inside each category to be explored.
Grid search based approaches, which explore all possible combi-
nations of preprocessing techniques to decide on the best, were
also developed [17,53]. However, they are computationally expen-
sive compared to the DoE-based approach which performs a pre-
selection of preprocessing techniques based on the design [14].
Recently, a faster genetic algorithm partial least squares (GAPLS)
approach was proposed for parallel comparison of the pre-
processing techniques, in order to achieve an optimal selection
[54]. The GAPLS based approach has the benefit that it can explore
the preprocessing in parallel but has the disadvantage compared to
the DoE based approach presented in Ref. [14] that it does not allow
sequential selection and optimization of different preprocessing
tasks such as baseline correction, followed by scatter correction,
noise removal and scaling. Recently, a new process analytical
technology (PAT) based soft sensor development, assessment and
comparison (SS-DAC) framework was presented for optimal pre-
processing selection [55]. To select the optimal preprocessing
technique or combination, the SS-DAC framework performs an
exhaustive pairwise statistical comparison to score the models
corresponding to the different options tested. However, the main
drawback with all these preprocessing selection and optimization
approaches (Table 2) is that they all aim at the selection of
6

techniques rather than using the complementary information
present in each preprocessing technique. In many cases, multiple
preprocessing techniques contain complementary information
which can be used for synergistic modelling [18,20,21].

6. Ensemble approaches to preprocessing fusion

Preprocessing techniques can enhance the quality of analytical
signals by removing artefacts. However, due to the limitations of
the different techniques and the complexity of the artefacts, a
single preprocessing technique may often not remove the artefacts
completely whereas, if used in a complementary way, a combina-
tion of different preprocessings may be more effective. In the pre-
sent section, three main approaches to ensemble preprocessing
selection and fusion are presented.

6.1. Ensemble based on stacked regression

The stacked regression approach involves training multiple
regression models with different preprocessings and then
combining themwith approaches such as cross validation or model
averaging. Such a strategy was presented in Xu, Zhou et al. [18],
where PLS models built on differently preprocessed data are
combined by Monte Carlo cross validation (MCCV) stacked
regression. The results show that the fusion of complementary
information obtained by different preprocessing techniques often
leads to a more stable and accurate calibration model. A summary
of the stacked regression approach [18] is presented in Fig. 2. At
first, some common preprocessing methods are used to transform
the data. Secondly, optimized calibration models are built on
differently preprocessed data. The third step is to combine the



Table 2
A summary of spectral preprocessing selection and optimization.

Selection approach Background idea Key features References

OPLS � Identities the joint and unique variation between raw
and preprocessed data to evaluate the preprocessing
technique

� Allows exploration of individual preprocessing
techniques

[15]

DoE based approach � Considers different artefact correction techniques as
different factors and uses Design of Experiments (D-
optimal, full factorial) to search for the optimal
combination

� Based on the design, model performance of a few
preprocessing methods and combination are
evaluated

[14,52,56]

Regularized MANOVA-based
preprocessing optimization

� Assesses the goodness of preprocessing techniques
by using the ratio of the between-group to within
group variance on the first canonical variate derived
from regularized MANOVA

� Grid search is used to find the best preprocessing
strategy

� Useful for preprocessing selection in case of
classification task

[53]

Soft sensor development,
assessment and comparison
(SS-DAC)

� Uses exhaustive statistical pairwise comparison of
multiple models developed based on different
preprocessings and their combination

� Uses the standardized process analytical technology
framework for soft sensor development

[55]

Grid search of all possible
combinations

� Allows exploration of all preprocessing possibilities
and combinations

� Defines the grid to select the best

� Python based open source toolbox available with a
collection of preprocessing techniques

[17]

Faster GA-PLS based optimal
preprocessing identification

� Faster genetic algorithm - partial least squares
modified to efficiently operate on multiple versions
of same data

� Can be used to explore preprocessing techniques in
parallel

� Can be used for faster exploration of tall datasets

[54]
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models to achieve the final model for ensemble calibration and
prediction. The combination coefficients vector W is estimated by
MCCV stacked regression. MCCV stacked regression deduces W by
non-negative least squares (NNLS) according to the following
equation:

Y ¼
�by1; by2; by3; :::byn

�
W (1)

where Y contains the reference concentration values for the left-
out samples during MCCV resampling and byi contains the corre-
sponding concentration value estimated by the i-th model; n is the
number of models and corresponds to the number of different
preprocessings tested. The stacking approach is easy to use and can
be implemented using standard chemometric toolboxes which
offer PLS modelling. However, a drawback of the stacked approach
is that it does not provide insight into what new information a
specific preprocess carries and to what extent it improves the
overall performances. Also, there are a large number of models to
be trained and optimized which might become computationally
expensive.

6.2. Ensemble based on design of experiments

The ensemble based on DoE [19] takes its inspiration from the
DoE based preprocessing selection and optimization approach [14].
Similarly to preprocessing selection approach, the ensemble
approach conceives preprocessing as a four-stage process. How-
ever, instead of selection and optimization of the preprocessing as
in the traditional DoE-based approach, the ensemble approach
explores all the models corresponding to individual preprocessing
techniques and all their possible combinations according to a full-
factorial design. An example of DoE based ensemble approach is
reported in Refs. [19] where PLS models based on numerous pre-
processing methods and all their combinations obtainable by a full
factorial design (sequentially applying baseline correction, scat-
tering correction, smoothing and scaling) are calculated (Fig. 3).
Finally, to perform the ensemble learning, the models which give
better predictions than PLS on the raw data are selected and their
7

predictions are averaged as the final prediction. A benefit of DoE-
based approaches is that, if a full factorial design is selected, it al-
lows exploration of all possible combinations of preprocessing
techniques. Furthermore, compared to the stacked regression
approach where all the model outputs were combined in the end
using the weight vector, the DoE-based approach only combines
the models which have better performance than the PLSRmodel on
the raw data. However, similarly to the stacked regression
approach, the DoE-based approach also has the disadvantage that is
does not provide insight into how combining different techniques
improves the model.

6.3. Methods inspired from multi-block data analysis

Multi-block data analysis is emerging as a key tool for per-
forming multi-sensor data integration and fusion [57,58]. An
application of multi-block data analysis can be understood as the
ensemble fusion of multiple preprocessing techniques. A recent
article demonstrated the benefits of using the multi-block
approach for spectral data preprocessing, where several pre-
treatments were combined using sequential and orthogonalized
partial least squares (SO-PLS), thus leading to a boosting procedure
[20,21]. The corresponding strategy was given the name SPORT, as
the acronym of sequential preprocessing through orthogonaliza-
tion. The results showed that not only the multi-block approach
allowed fusion of multiple preprocessings, but it also helped in
identifying the best preprocessing techniques and their combina-
tions. A schema of the SPORT approach is presented in Fig. 4. The
SPORT approach involves a series of PLS and orthogonalization
steps to extract the unique complementary information from each
differently preprocessed data block. As shown in Fig. 4, SPORT
starts by calculating a PLS model between the first data block (1st
preprocessing) and Y, giving the PLS scores for the first data block
and a first (partial) prediction of the response. Successively, both
the second data block (2nd preprocessing) and the Y are orthogo-
nalizedwith respect to the scores of the first regression. This allows
to remove from the second block of predictors any redundant in-
formation (i.e., any source of variation alreadymodeled by the first
block). A second PLS model is then built between the



Fig. 2. A summary of the stacking approach to ensemble of preprocessing techniques. At first, some standard preprocessing methods are used to transform the data. Secondly,
optimized calibration models are built on differently preprocessed data. The third step is to combine the sub-models to obtain the final global model for ensemble calibration and
prediction.
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orthogonalized second block and Y residuals of the first regression,
giving the PLS scores for the second data block and an updated
prediction of the response. The procedure continues until all the
desired blocks (corresponding to individual preprocessings) have
been used formodelling. Finally, the PLS scores from each block are
concatenated and used to predict the response through ordinary
least squares regression. The main advantage of SPORT compared
to stacked regression and DoE-based ensemble approaches is that
it allows exploring the unique information present in each data
block (individual preprocessings) with the help of scores and
loading plots [20]. However, a key issue of the SPORT approach is
that, being a sequential method, it requires the user to define the
order of the different preprocessings to be tested. This is a funda-
mental aspect to be considered and, at the same time, it is not
necessarily a drawback, but it can represent a potential source of
additional information, since models built on differently ordered
blocks could highlight different aspects of the same data set.
Indeed, if, on one hand, the need of defining the order of the
different preprocessings to be tested could add a further meta-
parameter to be optimized, it is also true that the literature on
SO-PLS, which constitutes the modeling engine of SPORT suggests
that the predictive performances are hardly affected by the
8

sequence of the blocks [21,58]. Therefore, where the focus is only
on the predictive accuracy, the challenge of defining the order of
preprocessings can easily be dealt with, e.g., by placing all the
faster, easier and model-free preprocessing techniques at the start
and reserving complex, time-consuming and model based pre-
processings for the end. On the other hand, the sequential pro-
cedure based on successive orthogonalization steps is such that a
block will contribute to the model (with a non-zero number of
latent variables) only if it carries unique information (i.e., infor-
mation not already accounted for by the previously modeled
matrices). This means that, by building different models on the
same data set but just changing the order in which the individual
matrices are presented, can provide a deeper insight into the
relationship between the various preprocessing, in terms of which
information is shared among all the blocks and which is unique of
specific pretreatments. Similarly, one could in principle identify
the minimum number of pretreatments carrying non-redundant
information. A recent application of the SPORT approach for NIR
modelling of highly scattering materials showed that multiple
scatter correction techniques carry complementary information
and that themodel accuracies improvedwhen theywere combined
through SPORT [21].



Fig. 3. A summary of the DoE-based ensemble approach. Several PLS models based on numerous preprocessing methods and their combinations (sequentially applying baseline
correction, scattering correction, smoothing and scaling) are obtained by full factorial design. Finally, to perform the ensemble learning, the models which give better predictions
than PLS on the raw data are selected and their predictions are averaged as the final prediction.

Fig. 4. A summary of the SPORT approach to ensemble fusion of preprocessing techniques. The SPORT approach develops a PLS model between the first data block (1st pre-
processing) and Y giving the PLS scores for the first data block. The scores from the first data block are used to orthogonalize the second data block (2nd preprocessing) and the Y.
Then a new PLS model is built between the orthogonalized second block and the orthogonalized Y giving the PLS scores for the second data block. This continues until scores are
extracted from all the desired blocks (individual preprocessings and their combinations). The final model is obtained by relating the concatenated PLS scores from the different
blocks to the response by means of ordinary least squares regression.
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Fig. 5. Summary of SPORT preprocessing fusion for the olive fruit dataset. (AeD) Prediction performances of the PLS models built on data preprocessed by individual scatter
correction techniques: (A) SNV, (B) VSN, (C) MSC, (D) RNV. (E) Optimal complexity of the SPORT model: only the VSN and MSC blocks contribute with a non-zero number of latent
variables. and (F) Prediction performances of the optimal SPORT model.

Fig. 6. Summary of SPORT preprocessing fusion for the beer classification dataset. (AeC) Prediction performances of the PLS-DA models built on data preprocessed by individual
scatter correction techniques: (A) SNV (2LVs), (B) MSC (2LVs), (C) 2nd derivative (2LVs); and (D) Prediction performances of the optimal SPORT model, fusing the information from
SNV (2 LVs), MSC (8 LVs) and 2nd derivative (2 LVs) preprocessed data.
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7. An example of sequential preprocessing through
orthogonalization

7.1. Olive dry matter regression case

To give the reader a better understanding of the ensemble
approach to spectral preprocessing fusion, a demonstration case
involving the use of the sequential preprocessing through
orthogonalization (SPORT) approach is provided. In particular, the
example demonstrates the use of SPORT in the context of the
characterization of fresh fruit by NIR spectroscopy, as the signals
suffer from scattering effects due to the interaction of lightwith the
physical structure of the fruit peel. The dataset used was related to
the possibility of predicting dry matter (DM) in olive fruits with a
handheld NIR sensor [59]. A total of 494 individual NIR spectra and
corresponding DM measurements were used for the modelling.
The dataset was divided into calibration (70%) and test set (30%)
using the Kennard-Stone algorithm [60]. Four different scatter
correction techniques, i.e. SNV (Block 1), VSN (Block 2), MSC (Block
3) and RNV (Block 4), were used in sequential order. SPORT was
implemented as explained in Ref. [20] with the freely available
multi-block analysis (MBA) toolbox [61]. The results of SPORT on
the olive fruits dataset are shown in Fig. 5. Fig. 5AeD shows the
results of standard PLSR calibration for SNV, VSN, MSC and RNV
preprocessed data, respectively. Fig. 5E shows the number of
complementary LVs (4 from VSN preprocessed data and 5 from
MSC preprocessed data) selected by the SPORT approach. Fig. 5F
shows the results of the SPORT model fusing the information from
VSN and MSC preprocessed data. The SPORT fusion reduced the
prediction error by 14.5% and increased the prediction R2 by 3.3%
compared to the best performing model calculated on individually
preprocessed data. In summary, fusion of multiple scatter correc-
tion techniques improved the model performance.

7.2. Beer classification case

The sequential preprocessing fusion approach SPORTcan also be
implemented in the context of classification problems. In Fig. 6, an
example of Italian craft beer classification using NIR spectroscopy
data is presented. The data used in this example are a subset of those
used in a previous research to authenticate an Italian craft beer and
differentiate it from other similar products [62]. Accordingly, the
classification problem involves two categories, Reale beer (the craft
beer of interest) and other beers. The calibration set contains a total
of 40 samples and the test set consists of 20 samples. The spectral
range of the data is 4000e10000 cm�1 with a nominal resolution of
4 cm�1 [62]. At first three separate PLS-DA models, each based on
data individually pretreatedwith either SNV, MSC or 2nd derivative
were developed and tested. Successively, the data pretreated with
the three different preprocessings were jointly used for sequential
multi-block fusionby the SPORTapproach. The sequentialmodelling
was performed using the SO-PLS-LDA option in the freely available
multi-blockanalysis (MBA) toolbox [61]. It canbenoted that thedata
pretreated with any of the individual preprocessing techniques
(Fig. 6) resulted in a classification accuracyof 75%.However,with the
sequential fusion approach the classification accuracy on the same
data was improved to 85%, thus indicating the benefit of combining
the useful information from different preprocessings for enhanced
model performances. Some other recent applications of SPORT can
be found in [21,63].

8. Concluding remarks

The sub-optimal selection of preprocessing has long been a
problem in chemometrics and that is why, in recent years,
11
several approaches for a more rational selection of the best
preprocessings have been proposed. However, all the pre-
processing selection strategies have the disadvantage that they
are focused on selecting the preprocessing rather exploring the
complementary information present in differently preprocessed
data for synergistic modelling. In this study, three approaches to
ensemble preprocessing fusion were identified. The three ap-
proaches were stacked regression, full factorial DoE-based
ensemble and sequential multi-block data analysis by treating
differently preprocessed data as separate blocks. Of the three
approaches, the stacking and DoE-based ones were based on
weighting or averaging the final outputs using either the weight
vector or mean estimation, respectively. Both these approaches
lack insight into what new information a new preprocessing
technique carries. On the other hand, the multi-block data
analysis-based approach (SPORT) has the main advantage that it
extracts the unique information from differently preprocessed
data. Furthermore, since it is based on the sequential calculation
of PLS regression models, the set of scores and loadings can be
used to explore and interpret what incremental (new) informa-
tion is brought by the different blocks, i.e. by the different pre-
processing techniques applied to the same data. Moreover, the
elimination of a block not contributing to the final model with
any latent variables directly shows that the application of the
corresponding preprocessing technique does not add any new
information: accordingly, some techniques can be discarded,
leading to a preprocessing selection. Therefore, it can be
concluded that, to have a better understanding of the effect of
each individual preprocessing in conjunction to model
improvement, multi-block analysis-based preprocessing fusion is
superior to model averaging-based methods.
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