H. Akima, A Method of Bivariate Interpolation and Smooth Surface Fitting for Irregularly Distributed Data Points, ACM Trans. Math. Softw, vol.4, issue.2, pp.148-159, 1978.

C. Alexander, A. H. Korstjens, and R. A. Hill, Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models, Int. J. Appl. Earth Obs. Geoinf, vol.65, pp.105-113, 2017.

D. R. Almeida, S. C. Stark, G. Shao, J. Schietti, B. W. Nelson et al., Optimizing the remote detection of tropical rainforest structure with airborne lidar: Leaf area profile sensitivity to pulse density and spatial sampling, Remote Sens, vol.11, issue.1, p.92, 2019.

S. Arya, D. Mount, S. E. Kemp, and G. Jefferis, RANN: Fast Nearest Neighbour Search (Wraps ANN Library) Using L2 Metric, 2019.

, Las Specification, Version 1.4 -R15, ASPRS, 2018.

P. Axelsson, DEM Generation from Laser Scanner Data Using adaptive TIN Models. International Archives of Photogrammetry and Remote Sensing, vol.33, pp.110-117, 2000.

E. Ayrey, S. Fraver, J. A. Kershaw, L. S. Kenefic, D. Hayes et al., Layer Stacking: A Novel Algorithm for Individual Forest Tree Segmentation from LiDAR Point Clouds, Can. J. Remote. Sens, vol.43, issue.1, pp.16-27, 2017.

E. Baltsavias, Airborne laser scanning: basic relations and formulas, ISPRS J. Photogramm. Remote Sens, vol.54, issue.2-3, pp.199-214, 1999.

C. Barnes, H. Balzter, K. Barrett, J. Eddy, S. Milner et al., Individual tree crown delineation from airborne laser scanning for diseased larch forest stands, Remote Sens, vol.9, issue.3, p.231, 2017.

J. R. Ben-arie, G. J. Hay, R. P. Powers, G. Castilla, and B. St-onge, Development of a pit filling algorithm for LiDAR canopy height models, Comput. Geosci, vol.35, issue.9, pp.1940-1949, 2009.

A. Beygelzimer, S. Kakadet, J. Langford, S. Arya, D. Mount et al., FNN: Fast Nearest Neighbor Search Algorithms and Applications, 2019.

R. S. Bivand, E. Pebesma, and V. Gomez-rubio, Applied spatial data analysis with R, 2013.

D. Blanchette, R. A. Fournier, J. E. Luther, and J. F. Côté, Predicting wood fiber attributes using local-scale metrics from terrestrial LiDAR data: A case study of Newfoundland conifer species, For. Ecol. Manag, vol.347, pp.116-129, 2015.

M. Bouvier, S. Durrieu, R. Fournier, and J. Renaud, Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data, Remote Sens. Environ, vol.156, pp.322-334, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02602434

T. Brandtberg, T. A. Warner, R. E. Landenberger, and J. B. Mcgraw, Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America, Remote Sens. Environ, vol.85, issue.3, pp.290-303, 2003.

P. Bunting, J. Armston, D. Clewley, and R. Lucas, The sorted pulse data software library (spdlib): Open source tools for processing lidar data, Proceedings of SilviLaser, 2011.

P. Bunting, J. Armston, D. Clewley, and R. M. Lucas, Sorted pulse data (SPD) library-Part II: A processing framework for LiDAR data from pulsed laser systems in terrestrial environments, Comput. Geosci, vol.56, pp.207-215, 2013.

L. Carrasco, X. Giam, M. Pape?, and K. S. Sheldon, Metrics of lidar-derived 3d vegetation structure reveal contrasting effects of horizontal and vertical forest heterogeneity on bird species richness, Remote Sens, vol.11, issue.7, p.743, 2019.

Q. Chen, D. Baldocchi, P. Gong, and M. Kelly, Isolating individual trees in a savanna woodland using small footprint lidar data, Photogramm. Eng. Remote Sens, vol.72, issue.8, pp.923-932, 2006.

Y. Chen, W. Su, J. Li, and Z. Sun, Hierarchical object oriented classification using very high resolution imagery and lidar data over urban areas, Adv. Space Res, vol.43, issue.7, pp.1101-1110, 2009.

Z. Chen, B. Gao, and B. Devereux, State-of-the-Art: DTM Generation Using Airborne LIDAR Data, Sensors, vol.17, p.1, 2017.

M. L. Clark, D. B. Clark, and D. A. Roberts, Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape, Remote Sens. Environ, vol.91, issue.1, pp.68-89, 2004.

T. De-conto, TreeLS: Terrestrial Point Cloud Processing of Forest Data, 2019.

T. De-conto, K. Olofsson, E. B. Görgens, L. C. Rodriguez, and G. Almeida, Performance of stem denoising and stem modelling algorithms on single tree point clouds from terrestrial laser scanning, Comput. Electron. Agric, vol.143, pp.165-176, 2017.

W. J. Cooper, W. J. Mcshea, T. Forrester, and D. A. Luther, The value of local habitat heterogeneity and productivity when estimating avian species richness and species of concern, Ecosphere, vol.11, issue.5, p.3107, 2020.

P. Crespo-peremarch, P. Tompalski, N. C. Coops, and L. Á. Ruiz, Characterizing understory vegetation in mediterranean forests using full-waveform airborne laser scanning data, Remote Sens. Environ, vol.217, pp.400-413, 2018.

G. Csárdi, cranlogs: Download Logs from the 'RStudio' 'CRAN' Mirror, 2019.

M. Dalponte and D. A. Coomes, Tree-centric mapping of forest carbon density from airborne laser scanning and perspectral data, Methods Ecol. Evol, vol.7, issue.10, pp.1236-1245, 2016.

N. Demir, B. Bayram, D. Z. ?eker, S. Oy, A. ?nce et al., Advanced Lake Shoreline Extraction Approach by Integration of SAR Image and LIDAR Data Advanced Lake Shoreline Extraction Approach by Integration of SAR Image and LIDAR Data, Mar. Geod, pp.166-185, 2019.

M. Dowle and A. Srinivasan, , 2019.

J. Elseberg, S. Magnenat, R. Siegwart, and A. Nüchter, Comparison of nearestneighbor-search strategies and implementations for efficient shape registration, J. Software Eng. Robotics (JOSER), vol.3, issue.1, pp.2-12, 2012.

J. S. Evans and A. T. Hudak, A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments, IEEE Trans. Geosci. Remote Sens, vol.45, issue.4, pp.1029-1038, 2007.

J. S. Evans, A. T. Hudak, R. Faux, and A. M. Smith, Discrete return lidar in natural resources: Recommendations for project planning, data processing, and deliverables, Remote Sens, vol.1, issue.4, pp.776-794, 2009.

K. Y. Van-ewijk, P. M. Treitz, and N. A. Scott, Characterizing Forest Succession in Central Ontario using Lidar-derived Indices, Photogramm. Eng. Remote. Sens, vol.77, issue.3, pp.261-269, 2011.

A. Ferraz, C. Mallet, and N. Chehata, Large-scale road detection in forested mountainous areas using airborne topographic lidar data, ISPRS J. Photogramm. Remote Sens, vol.112, pp.23-36, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02375998

S. Furze, J. Ogilvie, and P. A. Arp, Fusing digital elevation models to improve hydrological interpretations, J. Geogr. Inf. Syst, vol.9, issue.05, p.558, 2017.

M. García, D. Riaño, E. Chuvieco, and F. M. Danson, Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data, Remote Sens. Environ, vol.114, issue.4, pp.816-830, 2010.

D. Gatziolis, Dynamic range-based intensity normalization for airborne, discrete return lidar data of forest canopies, Photogramm. Eng. Remote Sens, vol.77, issue.3, pp.251-259, 2013.

D. L. Gaveau and R. A. Hill, Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data, Can. J. Remote. Sens, vol.29, issue.5, pp.650-657, 2003.

C. J. Gleason and J. Im, Forest biomass estimation from airborne LiDAR data using machine learning approaches, Remote Sens. Environ, vol.125, pp.80-91, 2012.

R. F. Graf, L. Mathys, and K. Bollmann, Habitat assessment for forest dwelling species using lidar remote sensing: Capercaillie in the alps, For. Ecol. Manag, vol.257, issue.1, pp.160-167, 2009.

H. Hamraz, M. A. Contreras, and J. Zhang, A robust approach for tree segmentation in deciduous forests using small-footprint airborne LiDAR data, Int. J. Appl. Earth Obs. Geoinf, vol.52, pp.532-541, 2016.

J. H. Hastings, S. V. Ollinger, A. P. Ouimette, R. Sanders-demott, M. W. Palace et al., Tree species traits determine the success of lidar-based crown mapping in a mixed temperate forest, Remote Sens, vol.12, issue.2, p.309, 2020.

R. J. Hijmans, raster: Geographic Data Analysis and Modeling. R package version 3, pp.0-7, 2019.

T. Hilker, F. G. Hall, N. C. Coops, A. Lyapustin, Y. Wang et al., Remote sensing of photosynthetic light-use efficiency across two forested biomes: Spatial scaling, Remote Sens. Environ, vol.114, issue.12, pp.2863-2874, 2010.

H. Huang and J. Lian, A 3D approach to reconstruct continuous optical images using lidar and MODIS, Forest Ecosystems, vol.2, issue.1, p.20, 2015.

M. O. Hunter, M. Keller, D. Victoria, and D. C. Morton, Tree height and tropical forest biomass estimation, Biogeosciences, vol.10, issue.12, pp.8385-8399, 2013.

J. Hyyppä and M. Inkinen, Detecting and estimating attribute for single trees using laser scanner, Photogrametric J. Fin, vol.16, issue.2, pp.27-42, 1999.

J. Hyyppä, O. Kelle, M. Lehikoinen, and M. Inkinen, A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners, IEEE Trans. Geosci. Remote Sens, vol.39, issue.5, pp.969-975, 2001.

J. Hyyppä, H. Hyyppä, D. Leckie, F. Gougeon, X. Yu et al., Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests, Int. J. Remote Sens, vol.29, issue.5, pp.1339-1366, 2008.

M. Isenburg, Lasindex -Spatial Indexing of Lidar Data, 2012.

M. Isenburg, LASzip: lossless compression of LiDAR data, Photogramm. Eng. Remote Sens, vol.79, issue.2, pp.209-217, 2013.

M. K. Jakubowski, Q. Guo, and M. Kelly, Tradeoffs between lidar pulse density and forest measurement accuracy, Remote Sens. Environ, vol.130, pp.245-253, 2013.

L. Jing, B. Hu, J. Li, and T. Noland, Automated Delineation of Individual Tree Crowns from Lidar Data by Multi-Scale Analysis and Segmentation, Photogramm. Eng. Remote Sens, vol.78, issue.12, pp.1275-1284, 2012.

K. Kampa and K. C. Slatton, An adaptive multiscale filter for segmenting vegetation in alsm data, Geoscience and Remote Sensing Symposium, 2004. IGARSS'04. Proceedings, vol.6, pp.3837-3840, 2004.

Y. Ke and L. J. Quackenbush, A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing, Int. J. Remote Sens, vol.32, issue.17, pp.4725-4747, 2011.

A. Khosravipour, A. K. Skidmore, M. Isenburg, T. Wang, and Y. A. Hussin, Generating Pit-free Canopy Height Models from Airborne Lidar, Photogramm. Eng. Remote Sens, vol.80, issue.9, pp.863-872, 2014.

A. Khosravipour, A. K. Skidmore, T. Wang, M. Isenburg, and K. Khoshelham, Effect of slope on treetop detection using a LiDAR Canopy Height Model, ISPRS J. Photogr. Remote Sensing, vol.104, 2015.

A. Khosravipour, A. K. Skidmore, and M. Isenburg, Generating spike-free Digital Surface Models using raw LiDAR point clouds: a new approach for forestry applications, Int. J. Appl. Earth Obs. Geoinf, vol.52, pp.104-114, 2016.

B. Koch, U. Heyder, and H. Weinacker, Detection of Individual Tree Crowns in Airborne Lidar Data, Photogramm. Eng. Remote Sens, vol.72, issue.4, pp.357-363, 2006.

K. Kraus and N. Pfeifer, Determination of terrain models in wooded areas with airborne laser scanner data, ISPRS J. Photogramm. Remote Sens, vol.53, issue.4, pp.193-203, 1998.

D. Kwak, W. Lee, H. Cho, S. Lee, Y. Son et al., Estimating stem volume and biomass of Pinus koraiensis using LiDAR data, J. Plant Res, vol.123, issue.4, pp.421-432, 2010.

G. Laserdata, , 2017.

B. Lecigne, viewshed3d: Compute Viewshed in 3D Point Clouds of Ecosystems, 2019.

B. Lecigne, J. U. Eitel, and J. L. Rachlow, viewshed3d: An r package for quantifying 3d visibility using terrestrial lidar data, Methods Ecol. Evol, vol.11, issue.6, pp.733-738, 2020.

S. Lee, G. Wolberg, and S. Y. Shin, Scattered data interpolation with multilevel bsplines, IEEE Trans. Vis. Comput. Graph, vol.3, issue.3, pp.228-244, 1997.

W. Li, Q. Guo, M. K. Jakubowski, and M. Kelly, A New Method for Segmenting Individual Trees from the Lidar Point Cloud, Photogramm. Eng. Remote Sens, vol.78, issue.1, pp.75-84, 2012.

X. Liang, J. Hyyppä, and L. Matikainen, Deciduous-coniferous tree classification using difference between first and last pulse laser signatures, XXXVI (Part3/W52), pp.253-257, 2007.

F. A. Limberger and M. M. Oliveira, Real-time detection of planar regions in unorganized point clouds, Pattern Recogn, vol.48, issue.6, pp.2043-2053, 2015.

C. Mallet and F. Bretar, Full-waveform topographic lidar: State-of-the-art, ISPRS J. Photogramm. Remote Sens, vol.64, issue.1, pp.1-16, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02381418

M. Maltamo, E. Naesset, and J. Vauhkonen, Forestry applications of airborne laser scanning. Concepts Case Stud, Manag Ecosys, vol.27, p.460, 2014.

S. Martinuzzi, L. A. Vierling, W. A. Gould, M. J. Falkowski, J. S. Evans et al., Mapping snags and understory shrubs for a lidar-based assessment of wildlife habitat suitability, Remote Sens. Environ, vol.113, issue.12, pp.2533-2546, 2009.

R. J. Mcgaughey, FUSION/LDV: Software for LIDAR Data Analysis and Visualization, 2015.

L. Mitas and H. Mitasova, Spatial interpolation, Geographical information systems: principles, techniques, management and applications, vol.1, pp.481-492, 1999.

M. Mohan, B. A. De-mendonça, C. A. Silva, C. Klauberg, A. S. De-saboya-ribeiro et al., Optimizing individual tree detection accuracy and measuring forest uniformity in coconut (cocos nucifera l.) plantations using airborne laser scanning, Ecol. Model, vol.409, p.108736, 2019.

D. Mongus and B. ?alik, Efficient method for lossless LIDAR data compression, Int. J. Remote Sens, vol.32, issue.9, pp.2507-2518, 2011.

A. L. Montealegre, M. T. Lamelas, and J. De-la-riva, A Comparison of Open-Source LiDAR Filtering Algorithms in a Mediterranean Forest Environment, IEEE J. Selected Topics Appl. Earth Obser. Remote Sensing, vol.8, issue.8, pp.4072-4085, 2015.

A. L. Montealegre, M. T. Lamelas, and J. Riva, Interpolation routines assessment in ALS-derived Digital Elevation Models for forestry applications, Remote Sens, vol.7, issue.7, pp.8631-8654, 2015.

S. Morsy, Land/water discrimination and land cover classification using multispectral airborne lidar data, 2017.

C. Mulverhill, N. Coops, J. White, P. Tompalski, P. Marshall et al., Enhancing the estimation of stem-size distributions for unimodal and bimodal stands in a boreal mixedwood forest with airborne laser scanning data, Remote Sens. Environ, vol.9, issue.2, pp.105-115, 2002.

A. Navarro, M. Young, B. Allan, P. Carnell, P. Macreadie et al., The application of unmanned aerial vehicles (uavs) to estimate above-ground biomass of mangrove ecosystems, p.111747, 2020.

R. Nelson, How did we get here? An early history of forestry lidar, Can. J. Remote. Sens, vol.39, issue.S1, pp.6-17, 2013.

M. Niemi and J. Vauhkonen, Extracting Canopy Surface Texture from Airborne Laser Scanning Data for the Supervised and Unsupervised Prediction of Area-Based Forest Characteristics, Remote Sens, vol.8, issue.7, p.582, 2016.

G. Pau, F. Fuchs, O. Sklyar, M. Boutros, and W. Huber, Ebimage-an r package for image processing with applications to cellular phenotypes, Bioinformatics, vol.26, issue.7, pp.979-981, 2010.

. Pdal-contributors, Pdal point data abstraction library, 2018.

E. Pebesma, Simple Features for R: Standardized Support for Spatial Vector Data, R J, vol.10, issue.1, pp.439-446, 2018.

E. J. Pebesma and R. S. Bivand, Classes and methods for spatial data in R, R News, vol.5, issue.2, pp.9-13, 2005.

F. Pirotti, A. Guarnieri, and A. Vettore, Vegetation filtering of waveform terrestrial laser scanner data for DTM production, Appl. Geomatics, vol.5, issue.4, pp.311-322, 2013.

S. C. Popescu, Estimating biomass of individual pine trees using airborne lidar, Biomass Bioenergy, vol.31, issue.9, pp.646-655, 2007.

S. C. Popescu, R. H. Wynne, and R. F. Nelson, Estimating plot-level tree heights with lidar: local filtering with a canopy-height based variable window size, Comput. Electron. Agric, vol.37, issue.1-3, pp.71-95, 2002.

B. Pradhan, S. Kumar, S. Mansor, A. R. Ramli, and A. Sharif, Light detection and ranging (LIDAR) data compression, KMITL J. Sci. Technol, vol.5, issue.3, pp.515-523, 2005.

C. Prendes, S. Buján, C. Ordoñez, and E. Canga, Large scale semi-automatic detection of forest roads from low density LiDAR data on steep terrain in, Northern Spain. iForest -Biogeosciences and Forestry, vol.12, issue.4, pp.366-374, 2019.

O. F. Price and C. E. Gordon, The potential for lidar technology to map fire fuel hazard over large areas of australian forest, J. Environ. Manag, vol.181, pp.663-673, 2016.

. R-core-team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2019.

E. B. Racine, N. C. Coops, B. St-onge, and J. Bégin, Estimating Forest Stand Age from LiDAR-Derived Predictors and Nearest Neighbor Imputation, For. Sci, vol.60, issue.1, pp.128-136, 2014.

J. Roussel, lidRplugins: Extra functions and algorithms for lidR package, 2019.

J. Roussel and D. Auty, 2020. lidR: Airborne LiDAR Data Manipulation and Visualization for Forestry Applications
URL : https://hal.archives-ouvertes.fr/hal-02317364

J. Roussel and F. De-boissieu, rlas: Read and Write 'las' and 'laz' Binary File Formats Used for Remote Sensing Data, 2019.

J. Roussel and J. Qi, RCSF: Airborne LiDAR Filtering Method Based on Cloth Simulation, 2018.

J. Roussel, J. Caspersen, M. Béland, S. Thomas, and A. Achim, Removing bias from LiDAR-based estimates of canopy height: Accounting for the effects of pulse density and footprint size, Remote Sens. Environ, vol.198, pp.1-16, 2017.

L. A. Ruiz, T. Hermosilla, F. Mauro, and M. Godino, Analysis of the influence of plot size and LiDAR density on forest structure attribute estimates, Forests, vol.5, issue.5, pp.936-951, 2014.

R. B. Rusu and S. Cousins, 3D is here: Point Cloud Library (PCL), In IEEE International Conference on Robotics and Automation (ICRA), 2011.

J. A. Senn, F. E. Fassnacht, J. Eichel, S. Seitz, and S. Schmidtlein, A new concept for estimating the influence of vegetation on throughfall kinetic energy using aerial laser scanning, Earth Surf. Process. Landforms, vol.45, pp.1487-1498, 2020.

C. A. Silva, A. T. Hudak, L. A. Vierling, E. L. Loudermilk, J. J. O'brien et al., Imputation of Individual Longleaf Pine (Pinus palustris Mill.) Tree Attributes from Field and LiDAR Data, Can. J. Remote. Sens, vol.42, issue.5, pp.554-573, 2016.

A. Soininen, TerraScan User's Guide, 2016.

C. Sothe, M. Dalponte, C. M. Almeida, M. B. Schimalski, C. L. Lima et al., Tree species classification in a highly diverse subtropical forest integrating uav-based photogrammetric point cloud and hyperspectral data, Remote Sens, vol.11, issue.11, 2019.

D. C. Sterratt, K. Habel, R. Grasman, R. B. Gramacy, and P. Mozharovskyi, geometry: Mesh Generation and Surface Tessellation, 2019.

A. E. Stovall, J. S. Diamond, R. A. Slesak, D. L. Mclaughlin, and H. Shugart, Quantifying wetland microtopography with terrestrial laser scanning, Remote Sens. Environ, vol.232, p.111271, 2019.

A. C. Swanson and J. F. Weishampel, Scaling lidar-derived rainforest canopy metrics across a mesoamerican landscape, Int. J. Remote Sens, vol.40, issue.24, pp.9181-9207, 2019.

P. Tompalski, J. Rakofsky, N. C. Coops, J. C. White, A. N. Graham et al., Challenges of multi-temporal and multi-sensor forest growth analyses in a highly disturbed boreal mixedwood forests, Remote Sens, vol.11, issue.18, p.2102, 2019.

P. Tompalski, J. C. White, N. C. Coops, and M. A. Wulder, Demonstrating the transferability of forest inventory attribute models derived using airborne laser scanning data, Remote Sens. Environ, vol.227, pp.110-124, 2019.

Y. Vanbrabant, S. Delalieux, L. Tits, K. Pauly, J. Vandermaesen et al., Pear flower cluster quantification using rgb drone imagery, Agronomy, vol.10, issue.3, p.407, 2020.

P. Vanvalkenburgh, K. C. Cushman, L. J. Butters, C. R. Vega, C. B. Roberts et al., Lasers without lost cities: Using drone lidar to capture architectural complexity at kuelap, amazonas, peru, J. Field Archaeol, vol.45, issue.sup1, pp.75-88, 2020.

C. Véga and S. Durrieu, Multi-level filtering segmentation to measure individual tree parameters based on Lidar data: Application to a mountainous forest with heterogeneous stands, Int. J. Appl. Earth Obs. Geoinf, vol.13, issue.4, pp.646-656, 2011.

C. Vega, A. Hamrouni, S. El-mokhtari, J. Morel, J. Bock et al., PTrees: A point-based approach to forest tree extraction from lidar data, Int. J. Appl. Earth Obs. Geoinf, vol.33, pp.98-108, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02601174

C. Véga, J. P. Renaud, S. Durrieu, and M. Bouvier, On the interest of penetration depth, canopy area and volume metrics to improve Lidar-based models of forest parameters, Remote Sens. Environ, vol.175, pp.32-42, 2016.

G. Vosselman, Slope based filtering of laser altimetry data, Int. Arch. Photogr. Remote Sensing, vol.33, issue.2, pp.678-684, 2000.

Y. Wang, H. Weinacker, and B. Koch, A Lidar point cloud based procedure for vertical canopy structure analysis and 3D single tree modelling in forest, Sensors, vol.8, issue.6, pp.3938-3951, 2008.

Y. Wang, J. Hyyppä, X. Liang, H. Kaartinen, X. Yu et al., International benchmarking of the individual tree detection methods for modeling 3-d canopy structure for silviculture and forest ecology using airborne laser scanning, IEEE Trans. Geosci. Remote Sens, vol.54, issue.9, pp.5011-5027, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02376018

J. C. White, M. A. Wulder, A. Varhola, V. Mikko, N. C. Coops et al., Best practices for generating forest inventory attributes from airborne laser scanning data using the area-based approach Best Practices Guide, The, vol.89, issue.6, pp.722-723, 2013.

J. C. White, N. C. Coops, M. A. Wulder, M. Vastaranta, T. Hilker et al., Remote sensing technologies for enhancing forest inventories: A review, Can. J. Remote. Sens, vol.42, issue.5, pp.619-641, 2016.

J. White, P. Tompalski, M. Vastaranta, M. A. Wulder, N. Saarinen et al., A model development and application guide for generating an enhanced forest inventory using airborne laser scanning data and an area-based approach. Natural Resources Canada= Ressources naturelles Canada, p.38, 2017.

B. M. Wing, M. W. Ritchie, K. Boston, W. B. Cohen, and M. J. Olsen, Individual snag detection using neighborhood attribute filtered airborne lidar data, Remote Sens. Environ, vol.163, pp.165-179, 2015.

M. A. Wulder, C. W. Bater, N. C. Coops, T. Hilker, and J. C. White, The role of lidar in sustainable forest management, For. Chron, vol.84, issue.6, pp.807-826, 2008.

J. M. Yancho, N. C. Coops, P. Tompalski, T. R. Goodbody, and A. Plowright, Fine-Scale Spatial and Spectral Clustering of UAV-Acquired Digital Aerial Photogrammetric (DAP) Point Clouds for Individual Tree Crown Detection and Segmentation, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.12, issue.10, pp.4131-4148, 2019.

W. Yao, P. Krzystek, and M. Heurich, Tree species classification and estimation of stem volume and DBH based on single tree extraction by exploiting airborne fullwaveform LiDAR data, Remote Sens. Environ, vol.123, pp.368-380, 2012.

B. Yu, H. Liu, J. Wu, Y. Hu, and L. Zhang, Automated derivation of urban building density information using airborne lidar data and object-based method, Climate Change and Spatial Planning, vol.98, issue.3, pp.210-219, 2010.

K. Zhang and D. Whitman, Comparison of Three Algorithms for Filtering Airborne Lidar Data, Photogramm. Eng. Remote. Sens, vol.71, issue.3, pp.313-324, 2005.

K. Zhang, S. C. Chen, D. Whitman, M. L. Shyu, J. Yan et al., A progressive morphological filter for removing nonground measurements from airborne LIDAR data, IEEE Trans. Geosci. Remote Sens, vol.41, pp.872-882, 2003.

J. X. Zhang, J. Q. Wu, K. Chang, W. J. Elliot, and S. Dun, Effects of DEM source and resolution on WEPP hydrologic and erosion simulation: a case study of two forest watersheds in Northern Idaho, Am. Soc. Agricul. Eng, vol.52, issue.2, pp.447-457, 2009.

W. Zhang, J. Qi, P. Wan, H. Wang, D. Xie et al., An easy-to-use airborne lidar data filtering method based on cloth simulation, Remote Sens, vol.8, issue.6, p.501, 2016.

K. Zhao, S. C. Popescu, and R. F. Nelson, Lidar remote sensing of forest biomass: A scale-invariant estimation approach using airborne lasers, Remote Sens. Environ, vol.113, issue.1, pp.182-196, 2009.

X. Zhao, Q. Guo, Y. Su, and B. Xue, Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas, ISPRS J. Photogramm. Remote Sens, vol.117, pp.79-91, 2016.

B. Zimbres, J. Shimbo, M. Bustamante, S. Levick, S. Miranda et al., Savanna vegetation structure in the brazilian cerrado allows for the accurate estimation of aboveground biomass using terrestrial laser scanning, For. Ecol. Manag, vol.458, p.117798, 2020.