E. Board, L. T. Long, and T. B. Voit, , 2006.

S. Iwamoto, A. N. Nakagaito, H. Yano, and M. Nogi, Optically transparent composites reinforced with plant fiber-based nanofibers, Appl. Phys. A Mater. Sci. Process, vol.81, pp.1109-1112, 2005.

,

I. Siró and D. Plackett, Microfibrillated cellulose and new nanocomposite materials: A review, Cellulose, vol.17, pp.459-494, 2010.

P. Ross, R. Mayer, and M. Benziman, Cellulose biosynthesis and function in bacteria, Microbiol. Rev, vol.55, pp.35-58, 1991.

W. Czaja, A. Krystynowicz, S. Bielecki, and R. M. Brown, Microbial cellulose -The natural power to heal wounds, Biomaterials, issue.27, pp.145-151, 2006.

,

Y. Hu, J. M. Catchmark, Y. Zhu, N. Abidi, X. Zhou et al., Engineering of porous bacterial cellulose toward human fibroblasts ingrowth for tissue engineering, J. Mater. Res, vol.29, pp.2682-2693, 2014.

A. Svensson, E. Nicklasson, T. Harrah, B. Panilaitis, D. L. Kaplan et al., Bacterial cellulose as a potential scaffold for tissue engineering of cartilage, Biomaterials, vol.26, pp.419-431, 2005.

P. Boonme, . Amnuaikit, and R. Chusuit, Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction, Med. Devices Evid. Res, 2011.

K. C. Cheng, J. M. Catchmark, and A. Demirci, Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis, Biomacromolecules, vol.12, pp.730-736, 2011.

S. Eyley and W. Thielemans, Surface modification of cellulose nanocrystals, Nanoscale, vol.6, pp.7764-7779, 2014.

D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors et al., Nanocelluloses: A new family of nature-based materials, Angew. Chemie -Int. Ed, vol.50, pp.5438-5466, 2011.

J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, and A. A. Rahuman, Synthesis and antimicrobial activity of copper nanoparticles, Mater. Lett, vol.71, pp.114-116, 2012.

,

V. K. Sharma, R. A. Yngard, and Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities, Adv. Colloid Interface Sci, vol.145, pp.83-96, 2009.

,

S. Gunalan, R. Sivaraj, and V. Rajendran, Green synthesized ZnO nanoparticles against bacterial and fungal pathogens, Prog. Nat. Sci. Mater. Int, vol.22, pp.693-700, 2012.

,

X. Li, S. M. Robinson, A. Gupta, K. Saha, Z. Jiang et al., Functional gold nanoparticles as potent antimicrobial agents against multi-drugresistant bacteria, ACS Nano, vol.8, pp.10682-10686, 2014.

R. J. Pinto, P. A. Marques, C. P. Neto, T. Trindade, S. Daina et al., Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers, Acta Biomater, vol.5, pp.2279-2289, 2009.

C. H. Bae, S. H. Nam, and S. M. Park, Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution, Appl. Surf. Sci, pp.628-634, 2002.

,

U. Nickel, A. Z. Castell, K. Pöppl, and S. Schneider, Silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced Raman spectroscopy, Langmuir, vol.16, pp.9087-9091, 2000.

G. Yang, J. Xie, F. Hong, Z. Cao, and X. Yang, Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: Effect of fermentation carbon sources of bacterial cellulose, Carbohydr. Polym, vol.87, pp.839-845, 2012.

,

F. Jiang and Y. L. Hsieh, Synthesis of cellulose nanofibril bound silver nanoprism for surface enhanced raman scattering, Biomacromolecules, vol.15, pp.3608-3616, 2014.

,

M. Tsuji, S. Gomi, Y. Maeda, M. Matsunaga, S. Hikino et al., Rapid transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of silver with PVP, citrate, and H 2O 2, Langmuir, vol.28, pp.8845-8861, 2012.

,

A. R. Lokanathan, K. M. Uddin, O. J. Rojas, and J. Laine, Cellulose nanocrystal-mediated synthesis of silver nanoparticles: Role of sulfate groups in nucleation phenomena, Biomacromolecules, vol.15, pp.373-379, 2014.

D. L. Van-hyning and C. F. Zukoski, Formation Mechanisms and Aggregation Behavior of Borohydride Reduced Silver Particles, Langmuir, vol.14, pp.7034-7046, 2002.

,

G. Ling, J. He, and L. Huang, Size control of silver nanoparticles deposited on silica dielectric spheres by electroless plating technique, J. Mater. Sci, vol.39, pp.2955-2957, 2004.

,

Y. Qin, X. Ji, J. Jing, H. Liu, H. Wu et al., Size control over spherical silver nanoparticles by ascorbic acid reduction, Colloids Surfaces A Physicochem. Eng. Asp, vol.372, pp.172-176, 2010.

,

Y. Sun, B. Mayers, and Y. Xia, Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process, Nano Lett, vol.3, pp.675-679, 2003.

,

S. Padalkar, J. R. Capadona, S. J. Rowan, C. Weder, Y. H. Won et al., Natural biopolymers: Novel templates for the synthesis of nanostructures, Langmuir, vol.26, pp.8497-8502, 2010.

K. Patel, B. Bharatiya, T. Mukherjee, T. Soni, A. Shukla et al., Role of stabilizing agents in the formation of stable silver nanoparticles in aqueous solution: Characterization and stability study, J. Dispers. Sci. Technol, vol.38, pp.626-631, 2017.

,

M. Kaushik and A. Moores, Review: Nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis, Green Chem, vol.18, pp.622-637, 2016.

,

R. Xiong, C. Lu, W. Zhang, Z. Zhou, and X. Zhang, Facile synthesis of tunable silver nanostructures for antibacterial application using cellulose nanocrystals, Carbohydr. Polym, vol.95, pp.214-219, 2013.

H. Dong, J. F. Snyder, D. T. Tran, and J. L. Leadore, Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles, Carbohydr. Polym, vol.95, pp.760-767, 2013.

,

S. Ifuku, M. Tsuji, M. Morimoto, H. Saimoto, and H. Yano, Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers, Biomacromolecules, vol.10, pp.2714-2717, 2009.

L. Johnson, W. Thielemans, and D. A. Walsh, Nanocomposite oxygen reduction electrocatalysts formed using bioderived reducing agents, J. Mater. Chem, vol.20, pp.1737-1743, 2010.

,

M. Hasani, E. D. Cranston, G. Westman, and D. G. Gray, Cationic surface functionalization of cellulose nanocrystals, Soft Matter, vol.4, pp.2238-2244, 2008.

H. Rosilo, J. R. Mckee, E. Kontturi, T. Koho, V. P. Hytönen et al., Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding, Nanoscale, vol.6, pp.11871-11881, 2014.

A. Kaboorani and B. , Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant, Ind. Crops Prod, vol.65, pp.45-55, 2015.

S. Lombardo and W. Thielemans, Thermodynamics of the interactions of positively charged cellulose nanocrystals with molecules bearing different amounts of carboxylate anions, Phys. Chem. Chem. Phys, vol.20, pp.17637-17647, 2018.

L. Jasmani, S. Eyley, R. Wallbridge, and W. Thielemans, A facile one-pot route to cationic cellulose nanocrystals, Nanoscale, vol.5, pp.10207-10211, 2013.

M. Khalil-abad, M. E. Yazdanshenas, and M. R. Nateghi, Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity, Cellulose, vol.16, pp.1147-1157, 2009.

B. H. Dong and J. P. Hinestroza, Metal nanoparticles on natural cellulose fibers: Electrostatic assembly and in situ synthesis, ACS Appl. Mater. Interfaces, vol.1, pp.797-803, 2009.

,

J. Araki, M. Wada, and S. Kuga, Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting, Langmuir, vol.17, pp.21-27, 2001.

Y. Zhang, V. Karimkhani, B. T. Makowski, G. Samaranayake, and S. J. Rowan, Nanoemulsions and Nanolatexes Stabilized by Hydrophobically Functionalized Cellulose Nanocrystals, Macromolecules, vol.50, pp.6032-6042, 2017.

Z. Hu, R. M. Berry, R. Pelton, and E. D. Cranston, One-Pot Water-Based Hydrophobic Surface Modification of Cellulose Nanocrystals Using Plant Polyphenols, ACS Sustain. Chem. Eng, vol.5, pp.5018-5026, 2017.

A. G. Cunha, J. B. Mougel, B. Cathala, L. A. Berglund, and I. Capron, Preparation of double pickering emulsions stabilized by chemically tailored nanocelluloses, Langmuir, vol.30, pp.9327-9335, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02639640

J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin, Colloidal gold and silver triangular nanoprisms, pp.646-664, 2009.

T. Parnklang, B. Lamlua, H. Gatemala, C. Thammacharoen, S. Kuimalee et al., Shape transformation of silver nanospheres to silver nanoplates induced by redox reaction of hydrogen peroxide, Mater. Chem. Phys, vol.153, pp.127-134, 2015.

,

G. S. Métraux and C. A. Mirkin, Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness, Adv. Mater, vol.17, pp.412-415, 2005.

R. Jin, Y. Cao, C. Mirkin, K. Kelly, G. Schatz et al., Photoinduced Conversion of Silver Nanospheres to Nanoprisms, pp.1901-1904, 1901.

,

S. Chen and D. L. Carroll, For Evaluation Only . Synthesis and Characterization of Truncated Triangular Silver Nanoplates, Nano, pp.2005-2008, 2008.

A. J. Haes and R. P. Van-duyne, A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, J. Am. Chem. Soc, vol.124, pp.10596-10604, 2002.

A. D. Mcfarland and R. P. Van-duyne, Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity, Nano Lett, vol.3, pp.1057-1062, 2003.

K. A. Homan, M. Souza, R. Truby, G. P. Luke, C. Green et al., Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging, ACS Nano, issue.6, pp.641-650, 2012.

P. Christopher and S. Linic, Engineering selectivity in heterogeneous catalysis: The impact of Ag surface structure on ethylene epoxidation selectivity, AIChE Annu. Meet. Conf. Proc, pp.11264-11265, 2008.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms, Nano Lett, vol.10, pp.1501-1505, 2010.

C. Yang, H. Gu, W. Lin, M. M. Yuen, C. P. Wong et al., Silver nanowires: From scalable synthesis to recyclable foldable electronics, Adv. Mater, vol.23, pp.3052-3056, 2011.

X. Lin, M. Wu, D. Wu, S. Kuga, T. Endo et al., Platinum nanoparticles using wood nanomaterials: Eco-friendly synthesis, shape control and catalytic activity for p-nitrophenol reduction, Green Chem, vol.13, pp.283-287, 2011.

I. Kalashnikova, H. Bizot, B. Cathala, and I. Capron, New pickering emulsions stabilized by bacterial cellulose nanocrystals, vol.27, pp.7471-7479, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02652595

,

J. Araki and Y. Hida, Comparison of methods for quantitative determination of silver content in cellulose nanowhisker/silver nanoparticle hybrids, Cellulose, vol.25, pp.1065-1076, 2018.

,

S. Beck, M. Méthot, and J. Bouchard, General procedure for determining cellulose nanocrystal sulfate half-ester content by conductometric titration, Cellulose, vol.22, pp.101-116, 2015.

,

T. Abitbol, E. Kloser, and D. G. Gray, Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis, Cellulose, vol.20, pp.785-794, 2013.

,

D. Da-silva-perez, S. Montanari, and M. R. Vignon, TEMPO-mediated oxidation of cellulose III, Biomacromolecules, vol.4, pp.1417-1425, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00306892

B. Ravel, M. Newville, A. Artemis, and . Hephaestus, Data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat, vol.12, pp.537-541, 2005.

,

I. K. Suh, H. Ohta, and Y. Waseda, High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction, J. Mater. Sci, vol.23, pp.757-760, 1988.

L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer, Text. Res. J, vol.29, pp.786-794, 1959.

P. Singhsa, R. Narain, and H. Manuspiya, Bacterial Cellulose Nanocrystals (BCNC) Preparation and Characterization from Three Bacterial Cellulose Sources and Development of

, Functionalized BCNCs as Nucleic Acid Delivery Systems, ACS Appl. Nano Mater, vol.1, pp.209-221, 2018.

N. M. Girouard, S. Xu, G. T. Schueneman, M. L. Shofner, and J. C. Meredith, Site-Selective Modification of Cellulose Nanocrystals with Isophorone Diisocyanate and Formation of Polyurethane-CNC Composites, ACS Appl. Mater. Interfaces, vol.8, pp.1458-1467, 2016.

,

T. Miyazawa, T. Shimanouchi, and S. I. Mizushima, Characteristic infrared bands of monosubstituted amides, J. Chem. Phys, vol.24, pp.408-418, 1956.

,

J. Araki, M. Wada, S. Kuga, and T. Okano, Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose

. Eng, Asp, vol.142, pp.75-82, 1998.

Y. Habibi, L. A. Lucia, and O. J. Rojas, Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications, vol.110, pp.3479-3500, 2010.

Y. Nishiyama, J. Sugiyama, H. Chanzy, and P. Langan, Crystal Structure and Hydrogen Bonding System in Cellulose I? from Synchrotron X-ray and Neutron Fiber Diffraction, J. Am. Chem
URL : https://hal.archives-ouvertes.fr/hal-00306874

, Soc, vol.125, pp.14300-14306, 2003.

N. F. Vasconcelos, J. P. Feitosa, F. M. Da-gama, J. P. Morais, F. K. Andrade et al., Bacterial cellulose nanocrystals produced under different hydrolysis conditions: Properties and morphological features, Carbohydr. Polym, vol.155, pp.425-431, 2017.

T. Saito and A. Isogai, TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions, Biomacromolecules, vol.5, pp.1983-1989, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00305562

Y. Okita, T. Saito, and A. Isogai, Entire Surface Oxidation of Various Cellulose Microfibrils by TEMPO-Mediated Oxidation, Biomacromolecules, vol.11, pp.1696-1700, 2010.

,

J. Y. Song and B. S. Kim, Rapid biological synthesis of silver nanoparticles using plant leaf extracts, Bioprocess Biosyst. Eng, vol.32, pp.79-84, 2009.

P. Raveendran, J. Fu, and S. L. Wallen, Completely "Green" Synthesis and Stabilization of Metal Nanoparticles, J. Am. Chem. Soc, vol.125, pp.13940-13941, 2003.

D. Musino, C. Rivard, G. Landrot, B. Novales, and I. Capron, Tunable Ag Nanoparticle Properties in Cellulose Nanocrystals/ Ag Nanoparticle Hybrid Suspensions by H2O2 Redox Post-Treatment: The Role Of The H2O2/Ag Ratio, vol.10, p.1559, 2020.

R. Ma, C. Levard, S. M. Marinakos, Y. Cheng, J. Liu et al., Size-controlled dissolution of organic-coated silver nanoparticles, Environ. Sci. Technol, vol.46