Z. Wang, M. Gerstein, and M. Snyder, RNA-Seq: a revolutionary tool for transcriptomics, Nat Rev Genet, vol.10, pp.57-63, 2009.

P. Agarwal, S. K. Parida, A. Mahto, S. Das, I. E. Mathew et al., Expanding frontiers in plant transcriptomics in aid of functional genomics and molecular breeding, Biotechnol J, vol.9, pp.1480-92, 2014.

J. A. O'rourke, Y. Bolon, B. Bucciarelli, and C. P. Vance, Legume genomics: understanding biology through DNA and RNA sequencing, Ann Bot, vol.113, pp.1107-1127, 2014.

N. Rutley and D. Twell, A decade of pollen transcriptomics, Plant Reprod, vol.28, pp.73-89, 2015.

K. Bashir, A. Matsui, S. Rasheed, and M. Seki, Recent advances in the characterization of plant transcriptomes in response to drought, salinity, heat, and cold stress, 2019.

A. Mortazavi, B. A. Williams, K. Mccue, L. Schaeffer, and B. Wold, Mapping and quantifying mammalian transcriptomes by RNA-Seq, Nat Methods, vol.5, pp.621-629, 2008.

J. H. Bullard, E. Purdom, K. D. Hansen, and S. Dudoit, Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments, BMC Bioinform, vol.11, p.94, 2010.

S. Anders and W. Huber, Differential expression analysis for sequence count data, Genome Biol, vol.11, p.106, 2010.

M. D. Robinson and A. Oshlack, A scaling normalization method for differential expression analysis of RNA-seq data, Genome Biol, vol.11, p.25, 2010.

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, pp.139-179, 2010.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res, vol.43, p.47, 2015.

P. Langfelder and S. Horvath, WGCNA: an R package for weighted correlation network analysis, BMC Bioinform, vol.9, p.559, 2008.

S. Kumari, J. Nie, H. Chen, H. Ma, R. Stewart et al., Evaluation of gene association methods for coexpression network construction and biological knowledge discovery, PLoS ONE, vol.7, p.50411, 2012.

D. , How does gene expression cluster work, Nat Biotech, vol.23, issue.12, pp.1499-501, 2006.

A. Rau, C. Maugis-rabusseau, M. Celeux, and G. , Co-expression analysis of high-throughput transcriptome sequencing data with poisson mixture models, Bioinformatics, vol.31, pp.1420-1427, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01108821

A. Rau and C. Maugis-rabusseau, Transformation and model choice for RNAseq co-expression analysis, Brief Bioinform, vol.19, pp.425-461, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02624483

C. W. Law, M. Alhamdoosh, S. Su, X. Dong, L. Tian et al., RNA-seq analysis is easy as 1-2-3 with limma, glimma and edgeR, 2016.

M. Lohse, A. M. Bolger, A. Nagel, A. R. Fernie, J. E. Lunn et al., RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics, Nucleic Acids Res, vol.40, pp.622-629, 2012.

F. Russo and C. Angelini, RNASeqGUI: a GUI for analysing RNA-Seq data, Bioinformatics, vol.30, pp.2514-2520, 2014.

F. Russo, D. Righelli, and C. Angelini, Advancements in RNASeqGUI towards a reproducible analysis of RNA-Seq experiments, Biomed Res Int, p.7972351, 2016.

J. W. Nelson, J. Sklenar, A. P. Barnes, and J. Minnier, The START App: a webbased RNAseq analysis and visualization resource, Bioinformatics, vol.33, pp.447-456, 2017.

H. Varet, L. Brillet-guéguen, J. Coppée, M. Dillies, and . Sartools, A DESeq2-and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data, PLoS ONE, p.11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01344179

S. Su, C. W. Law, C. Ah-cann, M. Asselin-labat, M. E. Blewitt et al., Glimma: interactive graphics for gene expression analysis, Bioinformatics, vol.33, pp.2050-2052, 2017.

Y. Li and J. Andrade, DEApp: an interactive web interface for differential expression analysis of next generation sequence data, Source Code Biol Med, vol.12, issue.2, 2017.

Q. Zhu, S. A. Fisher, H. Dueck, S. Middleton, M. Khaladkar et al., PIVOT: platform for interactive analysis and visualization of transcriptomics data, BMC Bioinform, vol.19, p.6, 2018.

K. Choi and N. Ratner, iGEAK: an interactive gene expression analysis kit for seamless workflow using the R/shiny platform, BMC Genomics, vol.20, p.177, 2019.

A. Kucukural, O. Yukselen, D. M. Ozata, M. J. Moore, and M. Garber, DEBrowser: interactive differential expression analysis and visualization tool for count data, BMC Genomics, vol.20, p.6, 2019.

, Shiny: web application framework for R version 1.3.2 from CRAN, 2019.

M. Dillies, A. Rau, J. Aubert, C. Hennequet-antier, M. Jeanmougin et al., A comprehensive evaluation of normalization methods for illumina high-throughput RNA sequencing data analysis, Brief Bioinform, vol.14, pp.671-83, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00782486

G. Rigaill, S. Balzergue, V. Brunaud, E. Blondet, A. Rau et al., Synthetic data sets for the identification of key ingredients for RNA-seq differential analysis, Brief Bioinform, vol.19, pp.65-76, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01595551

R. Reddy, A comparison of methods: normalizing high-throughput RNA sequencing data, p.26062, 2015.

C. Evans, J. Hardin, and D. M. Stoebel, Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions, Brief Bioinform, vol.19, pp.776-92, 2018.

N. J. Schurch, P. Schofield, M. Gierli?ski, C. Cole, A. Sherstnev et al., How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use?, RNA, vol.22, pp.839-51, 2016.

R. Zaag, J. P. Tamby, C. Guichard, Z. Tariq, G. Rigaill et al., GEM2Net: from gene expression modeling to -omics networks, a new CATdb module to investigate Arabidopsis thaliana genes involved in stress response, Nucleic Acids Res, vol.43, pp.1010-1017, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01137554

N. Frei-dit-frey, A. V. Garcia, J. Bigeard, R. Zaag, E. Bueso et al., Functional analysis of Arabidopsisimmune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences, Genome Biol, vol.15, p.87, 2014.

, The R project for statistical computing, 2019.

W. Huber, V. J. Carey, R. Gentleman, S. Anders, M. Carlson et al., Orchestrating high-throughput genomic analysis with Bioconductor, Nat Methods, vol.12, pp.115-136, 2015.

S. M. Brady, M. Burow, W. Busch, Ö. Carlborg, K. J. Denby et al., Reassess the t test: interact with all your data via ANOVA, Plant Cell, vol.27, pp.2088-94, 2015.

C. Boussardon, M. Martin-magniette, B. Godin, A. Benamar, B. Vittrant et al., Novel cytonuclear combinations modify Arabidopsis thaliana seed physiology and vigor, Front Plant Sci, vol.10, p.32, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02557423

H. Varet, Y. Shaulov, O. Sismeiro, M. Trebicz-geffen, R. Legendre et al., Enteric bacteria boost defences against oxidative stress in Entamoeba histolytica, Sci Rep, vol.8, pp.1-12, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02557490

C. Haddad, J. Trouverie, M. Arkoun, J. Yvin, J. Caïus et al., Silicon supply affects the root transcriptome of Brassica napus L, Planta, vol.249, pp.1645-51, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02184363

J. D. Montenegro, A. A. Golicz, P. E. Bayer, B. Hurgobin, H. Lee et al., The pangenome of hexaploid bread wheat, Plant J, vol.90, p.1007, 2017.

T. Brassica-genome-database, . Genoscope, and F. Cea,