A. Adachi, T. Horikawa, H. Shimizu, Y. Sarayama, T. Ogawa et al.,

T. Moriyama, Soybean Beta-conglycinin as the main allergen in a patient with food-dependent exercise-induced anaphylaxis by tofu: Food processing alters pepsin resistance, Clinical and Experimental Allergy, vol.39, issue.1, pp.167-173, 2009.

, Official Methods of Analysis (15th edn, AOAC, 1990.

A. Baglieri, S. Mahe, S. Zidi, J. F. Huneau, F. Thuillier et al., , 1994.

, Gastro-jejunal digestion of soya-bean-milk protein in humans, The British Journal of Nutrition, vol.72, issue.4, pp.519-532

T. Bohn, F. Carriere, L. Day, A. Deglaire, L. Egger et al.,

D. Dupont, Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models?, Critical Reviews in Food Science and Nutrition, vol.58, issue.13, pp.2239-2261, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01652894

M. Carbonaro, P. Maselli, and A. Nucara, Structural aspects of legume proteins and nutraceutical properties, Food Research International, vol.76, pp.19-30, 2015.

F. C. Church, H. E. Swaisgood, D. H. Porter, and G. L. Catignani, Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins, Journal of Dairy Science, vol.66, issue.6, pp.1219-1227, 1983.

M. Corgneau, C. Gaiani, D. Thanh, and L. Le, Nutritional quality evaluation of commercial protein supplements, International Journal of Food Science and Technology, pp.1-9, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02275304

M. E. Dalmaua, G. M. Bornhorst, V. Eima, C. Rosselló, and S. Simal, Effects of freezing, freeze drying and convective drying on in vitro gastric digestion of apples, Food Chemistry, vol.215, pp.7-16, 2017.

S. S. Desphande and S. Damodaran, Structure Digestibility Relationship of Legume 7S Proteins, Journal of Food Science, vol.54, issue.1, pp.108-113, 1989.

L. Egger, O. Ménard, C. Baumann, D. Duerr, H. Stoffers et al.,

R. Portmann, Digestion of Proteins in Milk: Comparing different in vitro systems with in vivo data, Food Research International, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01496822

L. Egger, O. Ménard, C. Delgado-andrade, P. Alvito, R. Assunção et al.,

R. Portmann, The harmonized INFOGEST in vitro digestion method: From knowledge to action, Food Research International, vol.88, pp.217-225, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01435380

H. N. Englyst and J. H. Cummings, Simplified method for the measurement of total non-starch polysaccharides by gas-liquid chromatography of constituent sugars as alditol acetates, Commission Regulation, vol.109, issue.7, 1984.

&. Fao and . Who, Joint FAO/WHO Expert Consultation on Protein Quality Evaluation, 1989.

, Production database from the Food and Agriculture Organization of the United Nations, 2017.

D. Fukushima, Soy proteins for foods centering around soy sauce and tofu, Journal of the American Oil Chemists' Society, vol.58, issue.3, pp.346-354, 1981.

A. D. González, B. Frostell, and A. Carlsson-kanyama, Protein efficiency per unit energy and per unit greenhouse gas emissions : Potential contribution of diet choices to climate change mitigation, Food Policy, vol.36, pp.562-570, 2011.

N. Harnkarnsujarit, K. Kawai, M. Watanabe, and T. Suzuki, Effects of freezing on microstructure and rehydration properties of freeze-dried soybean curd, Journal of Food Engineering, vol.184, pp.10-20, 2016.

. Iso, Céréales, produits céréaliers et aliments des animaux -Détermination de la teneur en matières grasses brutes et en matières grasses totales par la méthode d'extraction de Randall Méthode NF ISO 11085, 2008.

L. Laguna, P. Picouet, M. D. Guàrdia, C. M. Renard, and A. Sarkar, In vitro gastrointestinal digestion of pea protein isolate as a function of pH, food matrices, autoclaving, high-pressure and re-heat treatments. LWT -Food Science and Technology, vol.84, pp.511-519, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607826

X. Li, Y. Li, Y. Hua, A. Qiu, C. Yang et al., Effect of concentration, ionic strength and freeze-drying on the heat-induced aggregation of soy proteins, Food Chemistry, vol.104, issue.4, pp.1410-1417, 2007.

S. Liu, M. Maison, T. Stein, and H. H. , Effects of protein concentration and heat treatment on concentration of digestible and metabolizable energy and on amino acid digestibility in four sources of canola meal fed to growing pigs, Journal of Animal Science, vol.92, issue.10, pp.4466-4477, 2014.

W. Liu, H. Lou, C. Ritzoulis, X. Chen, P. Shen et al.,

J. Han, Structural characterization of soybean milk particles during in vitro digestive / non-digestive simulation. LWT -Food Science and Technology, vol.108, pp.326-331, 2019.

L. Lorieau, A. Halabi, A. Ligneul, E. Hazart, D. Dupont et al., Impact of the dairy product structure and protein nature on the proteolysis and amino acid bioaccessiblity during in vitro digestion, Food Hydrocolloids, vol.82, pp.399-411, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01791807

Q. Luo, J. W. Borst, A. H. Westphal, R. M. Boom, and A. E. Janssen, Pepsin diffusivity in whey protein gels and its effect on gastric digestion, Food Hydrocolloids, vol.66, pp.318-325, 2017.

F. Mariotti, D. Tomé, and P. P. Mirand, Converting nitrogen into protein -Beyond 6.25 and Jones' factors, Critical Reviews in Food Science and Nutrition, vol.48, issue.2, pp.177-184, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02105858

D. J. Mat, T. Cattenoz, I. Souchon, C. Michon, and S. Le-feunteun, Monitoring protein hydrolysis by pepsin using pH-stat: In vitro gastric digestions in static and dynamic pH conditions, Food Chemistry, vol.239, pp.268-275, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01621904

D. J. Mat, S. Le-feunteun, C. Michon, and I. Souchon, In vitro digestion of foods using pH-stat and the INFOGEST protocol: Impact of matrix structure on digestion kinetics of macronutrients, proteins and lipids, Food Research International, vol.88, pp.226-233, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01384421

M. Minekus, M. Alminger, P. Alvito, S. Ballance, T. Bohn et al.,

A. Brodkorb, A standardised static in vitro digestion method suitable for food -an international consensus, Food Funct. Food Funct, vol.5, issue.5, pp.1113-1124, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01195466

S. Moore and W. H. Stein, A modified ninhydrin reagent for the photometric determination of amino acids and related compounds, J. Biol. Chem, vol.211, issue.2, pp.907-913, 1954.

A. Nawrocka, M. Szyma?ska-chargot, A. Mi?, R. Kowalski, and W. I. Gruszecki, Raman studies of gluten proteins aggregation induced by dietary fibres, Food Chemistry, vol.194, pp.86-94, 2016.

R. Panasiuk, R. Amarowicz, H. Kostyra, and L. Sijtsma, Determination of ?-amino nitrogen in pea protein hydrolysates: A comparison of three analytical methods, Food Chemistry, vol.62, issue.3, pp.164-171, 1998.

M. Petitot, C. Brossard, C. Barron, C. Larré, M. H. Morel et al., Modification of pasta structure induced by high drying temperatures. Effects on the in vitro digestibility of protein and starch fractions and the potential allergenicity of protein hydrolysates, Food Chemistry, vol.116, issue.2, pp.401-412, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02664182

G. Picariello, B. Miralles, G. Mamone, L. Sánchez-rivera, I. Recio et al., Role of intestinal brush border peptidases in the simulated digestion of milk proteins, Molecular Nutrition and Food Research, vol.59, issue.5, pp.948-956, 2015.

T. Rahaman, T. Vasiljevic, and L. Ramchandran, Effect of heat, pH and shear on digestibility and antigenic characteristics of wheat gluten, European Food Research and Technology, vol.242, issue.11, pp.1829-1836, 2016.

P. Rozan, R. Lamghari, M. Linder, C. Villaume, J. Fanni et al., In Vivo and in Vitro Digestibility of Soybean, Lupine, and Rapeseed Meal Proteins after Various Technological Processes, Journal of Agricultural and Food Chemistry, vol.45, issue.5, pp.1762-1769, 1997.

X. Rui, G. Xing, Q. Zhang, F. Zare, W. Li et al., Protein bioaccessibility of soymilk and soymilk curd prepared with two Lactobacillus plantarum strains as assessed by in vitro gastrointestinal digestion. Innovative Food Science & Emerging Technologies, vol.38, pp.155-159, 2016.

V. K. Sarin, S. B. Kent, J. P. Tam, and R. B. Merrifield, Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction, Analytical Biochemistry, vol.117, issue.1, pp.147-157, 1981.

D. A. Sorgentini and J. R. Wagner, Comparative study of foaming properties of whey and isolate soybean proteins, Food Research International, vol.35, issue.8, pp.721-729, 2002.

Y. Reynaud, Food Research International, vol.134, p.109204, 2020.

, , pp.67-71

O. L. Tavano, V. A. Neves, . Da-silva, and S. I. Júnior, In vitro versus in vivo protein digestibility techniques for calculating PDCAAS (protein digestibility-corrected amino acid score) applied to chickpea fractions, Food Research International, vol.89, pp.756-763, 2016.

N. J. Thiex, H. Manson, S. Anderson, and J. Å. Persson, Determination of crude protein in animal feed, forage, grain, and oilseeds by using block digestion with a copper catalyst and steam distillation into boric acid: Collaborative study, Journal of AOAC International, vol.85, issue.2, pp.309-317, 2002.

S. L. Turgeon, C. Bard, and S. F. Gauthier, Comparaison de trois méthodes pour la mesure du degré d'hydrolyse de protéines laitières modifiées enzymatiquement, Canadian Institute of Food Science and Technology Journal, vol.24, issue.1-2, pp.70013-70021, 1991.

T. Wu, C. Taylor, T. Nebl, K. Ng, and L. E. Bennett, Effects of chemical composition and baking on in vitro digestibility of proteins in breads made from selected gluten-containing and gluten-free flours, Food Chemistry, vol.233, pp.514-524, 2017.