M. Thangaraju, G. A. Cresci, and K. Liu, GPR109A is a G-protein-coupled 629 receptor for the bacterial fermentation product butyrate and functions as a tumor 630 suppressor in colon, Cancer Res, vol.69, pp.2826-2832, 2009.

B. D. Hudson, I. G. Tikhonova, and S. K. Pandey, Extracellular ionic locks determine 632 variation in constitutive activity and ligand potency between species orthologs of the 633 free fatty acid receptors FFA2 and FFA3, The Journal of biological chemistry, vol.287, pp.41195-41209, 2012.

R. T. Dorsam and J. S. Gutkind, G-protein-coupled receptors and cancer, Nat Rev 636 Cancer, vol.7, pp.79-94, 2007.

D. Priori, M. Colombo, and P. Clavenzani, The Olfactory Receptor OR51E1 Is 638 Present along the Gastrointestinal Tract of Pigs, Co-Localizes with Enteroendocrine 639 Cells and Is Modulated by Intestinal Microbiota, PloS one, vol.10, p.61, 2015.

Y. E. Han, C. W. Kang, and J. H. Oh, Olfactory Receptor OR51E1 Mediates GLP, issue.1, 2018.

, Secretion in Human and Rodent Enteroendocrine L Cells, J Endocr Soc, vol.2, p.62

J. Fleischer, R. Bumbalo, and V. Bautze, Expression of odorant receptor Olfr78 643 in enteroendocrine cells of the colon, Cell Tissue Res, vol.361, pp.697-710, 2015.

J. L. Pluznick, Renal and cardiovascular sensory receptors and blood pressure 645 regulation, Am J Physiol Renal Physiol, vol.305, pp.439-444, 2013.

M. D. Basson, Y. W. Liu, and A. M. Hanly, Identification and comparative analysis 647 of human colonocyte short-chain fatty acid response genes, J Gastrointest Surg, vol.4, p.501, 2000.

A. Rada-iglesias, S. Enroth, and A. Ameur, Butyrate mediates decrease of histone 650 acetylation centered on transcription start sites and down-regulation of associated 651 genes, Genome Res, vol.17, pp.708-719, 2007.

D. R. Donohoe, L. B. Collins, and A. Wali, The Warburg effect dictates the 653 mechanism of butyrate-mediated histone acetylation and cell proliferation, Mol Cell, vol.48, p.654, 2012.

E. P. Candido and J. R. Reeves-r-davie, Sodium butyrate inhibits histone deacetylation 656 in cultured cells, Cell, vol.14, pp.105-113, 1978.

L. Sealy and R. Chalkley, The effect of sodium butyrate on histone modification, 1978.

, Cell, vol.14, pp.115-121

D. R. Donohoe and S. J. Bultman, Metaboloepigenetics: interrelationships between 660 energy metabolism and epigenetic control of gene expression, J Cell Physiol, vol.227, p.3169, 2012.

P. Bose, Y. Dai, and S. Grant, Histone deacetylase inhibitor (HDACI) mechanisms of 663 action: emerging insights, Pharmacol Ther, vol.143, pp.323-336, 2014.

N. Arpaia, C. Campbell, and X. Fan, Metabolites produced by commensal 665 bacteria promote peripheral regulatory T-cell generation, Nature, vol.504, p.72, 2013.

B. K. Thakur, N. Dasgupta, and A. Ta, Physiological TLR5 expression in the 667 intestine is regulated by differential DNA binding of Sp1/Sp3 through simultaneous 668, 2016.

, Sp1 dephosphorylation and Sp3 phosphorylation by two different PKC isoforms. 669, Nucleic Acids Res, vol.44, pp.5658-5672

R. Fellows, J. Denizot, and C. Stellato, Microbiota derived short chain fatty acids 671 promote histone crotonylation in the colon through histone deacetylases, Nature, vol.672, issue.9, p.105, 2018.

L. C. Boffa, R. J. Gruss, and V. G. Allfrey, Manifold effects of sodium butyrate on nuclear 674 function. Selective and reversible inhibition of phosphorylation of histones H1 and 675 H2A and impaired methylation of lysine and arginine residues in nuclear protein 676 fractions, The Journal of biological chemistry, vol.256, pp.9612-9621, 1981.

O. P. Mathew, K. Ranganna, and F. M. Yatsu, Butyrate, an HDAC inhibitor, stimulates 678 interplay between different posttranslational modifications of histone H3 and 679 differently alters G1-specific cell cycle proteins in vascular smooth muscle cells, 2010.

, Biomed Pharmacother, vol.64, pp.733-740

M. I. Parker, J. B. De-haan, and W. Gevers, DNA hypermethylation in sodium butyrate-682 treated WI-38 fibroblasts, The Journal of biological chemistry, vol.261, p.77, 1986.

A. S. Lange, K. Amolo, and T. , Short-chain fatty acids stimulate angiopoietin-684 like 4 synthesis in human colon adenocarcinoma cells by activating peroxisome 685 proliferator-activated receptor gamma, Mol Cell Biol, vol.33, pp.1303-1316, 2013.

L. Marinelli, C. Martin-gallausiaux, and J. Bourhis, Identification of the novel 687 role of butyrate as AhR ligand in human intestinal epithelial cells, Scientific reports, vol.9, p.688, 2019.

S. E. Fleming, S. Y. Choi, and M. D. Fitch, Absorption of short-chain fatty acids from the 690 rat cecum in vivo, J Nutr, vol.121, pp.1787-1797, 1991.

M. S. Ardawi and E. A. Newsholme, Fuel utilization in colonocytes of the rat, 1985.

, Biochem J, vol.231, pp.713-719

W. E. Roediger, Role of anaerobic bacteria in the metabolic welfare of the colonic 694 mucosa in man, Gut, vol.21, pp.793-798, 1980.

G. T. Furuta, J. R. Turner, and C. T. Taylor, Hypoxia-inducible factor 1-dependent 696 induction of intestinal trefoil factor protects barrier function during hypoxia, J Exp Med, vol.697, pp.1027-1034, 2001.

M. Andriamihaja, C. Chaumontet, and T. D. , Butyrate metabolism in human 699 colon carcinoma cells: implications concerning its growth-inhibitory effect, J Cell 700 Physiol, vol.218, pp.58-65, 2009.

J. M. Blouin, G. Penot, and M. Collinet, Butyrate elicits a metabolic switch in 702 human colon cancer cells by targeting the pyruvate dehydrogenase complex, Int J 703 Cancer, vol.128, pp.2591-2601, 2011.

D. R. Donohoe, N. Garge, and X. Zhang, The microbiome and butyrate regulate 705 energy metabolism and autophagy in the mammalian colon, Cell metabolism, vol.13, p.517, 2011.

K. L. Zambell, M. D. Fitch, and S. E. Fleming, Acetate and butyrate are the major 708 substrates for de novo lipogenesis in rat colonic epithelial cells, J Nutr, vol.133, p.87, 2003.

J. H. Park, T. Kotani, and T. Konno, Promotion of Intestinal Epithelial Cell, vol.710, 2016.

, Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids, PloS one, vol.11, p.711

C. Augeron and C. L. Laboisse, Emergence of permanently differentiated cell clones 713 in a human colonic cancer cell line in culture after treatment with sodium butyrate, 1984.

, Cancer Res, vol.44, pp.3961-3969

J. A. Barnard and G. Warwick, Butyrate rapidly induces growth inhibition and 716 differentiation in HT-29 cells, Cell Growth Differ, vol.4, pp.495-501, 1993.

G. E. Kaiko, S. H. Ryu, and O. I. Koues, The Colonic Crypt Protects Stem Cells from 718, 2016.

M. Metabolites, Cell, vol.167, p.91

A. Csordas, Butyrate, aspirin and colorectal cancer, Eur J Cancer Prev, vol.5, p.221, 1996.

S. Sengupta, J. G. Muir, and P. R. Gibson, Does butyrate protect from colorectal cancer? 722, J Gastroenterol Hepatol, vol.21, pp.209-218, 2006.

K. Ba, A. Madhavan, and T. Rr, Short chain fatty acids enriched fermentation 724 metabolites of soluble dietary fibre from Musa paradisiaca drives HT29 colon cancer 725 cells to apoptosis, PloS one, vol.14, p.94, 2019.

G. M. Matthews, G. S. Howarth, and R. N. Butler, Short-chain fatty acids induce apoptosis 727 in colon cancer cells associated with changes to intracellular redox state and glucose 728 metabolism, Chemotherapy, vol.58, pp.102-109, 2012.

S. Okabe, T. Okamoto, and C. M. Zhao, Acetic acid induces cell death: an in vitro 730 study using normal rat gastric mucosal cell line and rat and human gastric cancer and 731 mesothelioma cell lines, J Gastroenterol Hepatol, vol.29, pp.65-69, 2014.

S. P. Verma and P. Das, Sodium butyrate induces cell death by autophagy 733 and reactivates a tumor suppressor gene DIRAS1 in renal cell carcinoma cell line 734 UOK146, In Vitro Cell Dev Biol Anim, vol.54, pp.295-303, 2018.

K. Kim, O. Kwon, and T. Y. Ryu, Propionate of a microbiota metabolite induces 736 cell apoptosis and cell cycle arrest in lung cancer, Mol Med Rep, vol.20, p.98, 2019.

T. T. Wang, A. S. Chiang, and J. J. Chu, Concomitant alterations in distribution of 738 70 kDa heat shock proteins, cytoskeleton and organelles in heat shocked 9L cells, Int J 739 Biochem Cell Biol, vol.30, pp.745-759, 1998.

L. B. Bindels, P. Porporato, and E. M. Dewulf, Gut microbiota-derived propionate 741 reduces cancer cell proliferation in the liver, Br J Cancer, vol.107, pp.1337-1344, 2012.

M. R. Casanova, J. Azevedo-silva, and L. R. Rodrigues, Colorectal Cancer Cells 743 Increase the Production of Short Chain Fatty Acids by Propionibacterium 744 freudenreichii Impacting on, Cancer Cells Survival. Front Nutr, vol.5, p.44, 2018.

F. M. Gribble and F. Reimann, Function and mechanisms of enteroendocrine cells 746 and gut hormones in metabolism, Nat Rev Endocrinol, vol.15, pp.226-237, 2019.

P. D. Cani, J. Amar, and M. A. Iglesias, Metabolic endotoxemia initiates obesity 748 and insulin resistance, Diabetes, vol.56, pp.1761-1772, 2007.

B. S. Samuel, A. Shaito, and T. Motoike, Effects of the gut microbiota on host 750 adiposity are modulated by the short-chain fatty-acid binding G protein-coupled 751 receptor, Gpr41, Proceedings of the National Academy of Sciences of the United States, vol.752, pp.16767-16772, 2008.

S. Karaki, H. Tazoe, and H. Hayashi, Expression of the short-chain fatty acid 754 receptor, GPR43, in the human colon, J Mol Histol, vol.39, pp.135-142, 2008.

V. B. Lu, F. M. Gribble, and F. Reimann, Free Fatty Acid Receptors in Enteroendocrine 756 Cells, Endocrinology, vol.159, pp.2826-2835, 2018.

M. K. Nohr, M. H. Pedersen, and A. Gille, GPR41/FFAR3 and GPR43/FFAR2 as 758 cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric 759 neurons and FFAR2 in enteric leukocytes, Endocrinology, vol.154, pp.3552-3564, 2013.

G. Tolhurst, H. Heffron, and Y. S. Lam, Short-chain fatty acids stimulate 761 glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2, Diabetes, vol.762, pp.364-371, 2012.

D. Bolognini, A. B. Tobin, and G. Milligan, The Pharmacology and Function of 764 Receptors for Short-Chain Fatty Acids, Mol Pharmacol, vol.89, pp.388-398, 2016.

B. D. Hudson, M. E. Due-hansen, and E. Christiansen, Defining the molecular basis 766 for the first potent and selective orthosteric agonists of the FFA2 free fatty acid receptor, 2013.

, The Journal of biological chemistry, vol.288, pp.17296-17312

A. Psichas, M. L. Sleeth, and K. G. Murphy, The short chain fatty acid propionate 769 stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents, International journal of obesity, vol.770, pp.424-429, 2015.

E. Y. Lee, X. Zhang, and J. Miyamoto, Gut carbohydrate inhibits GIP secretion 772 via a microbiota/SCFA/FFAR3 pathway, J Endocrinol, vol.239, pp.267-276, 2018.

Z. Ang, D. Xiong, and M. Wu, FFAR2-FFAR3 receptor heteromerization 774 modulates short-chain fatty acid sensing, FASEB J, vol.32, pp.289-303, 2018.

M. Es and G. Frost, Control of appetite and energy intake by 776 SCFA: what are the potential underlying mechanisms?, Proc Nutr Soc, vol.74, pp.328-336, 2015.

H. Tazoe, Y. Otomo, and S. Karaki, Expression of short-chain fatty acid receptor 778 GPR41 in the human colon, Biomed Res, vol.30, pp.149-156, 2009.

G. P. Roberts, P. Larraufie, and P. Richards, , 2019.

, Enteroendocrine Cells by Transcriptomic and Peptidomic Profiling, Diabetes, vol.68, pp.1062-781

P. Larraufie, C. Martin-gallausiaux, and N. Lapaque, SCFAs strongly stimulate 783 PYY production in human enteroendocrine cells, Scientific reports, vol.8, p.74, 2018.

L. Brooks, A. Viardot, and A. Tsakmaki, Fermentable carbohydrate stimulates 785 FFAR2-dependent colonic PYY cell expansion to increase satiety, Mol Metab, vol.6, p.48, 2017.

N. Petersen, F. Reimann, and S. Bartfeld, Generation of L cells in mouse and 788 human small intestine organoids, Diabetes, vol.63, pp.410-420, 2014.

C. S. Reigstad, C. E. Salmonson, and J. F. Rainey, Gut microbes promote colonic 790 serotonin production through an effect of short-chain fatty acids on enterochromaffin 791 cells, FASEB J, vol.29, pp.1395-1403, 2015.

J. Zhou, R. J. Martin, and R. T. Tulley, Dietary resistant starch upregulates total 793, 2008.

, GLP-1 and PYY in a sustained day-long manner through fermentation in rodents, J Physiol Endocrinol Metab, vol.794, pp.1160-1166

P. Larraufie, J. Dore, and N. Lapaque, TLR ligands and butyrate increase Pyy 796 expression through two distinct but inter-regulated pathways, Cellular microbiology, 2017.

H. M. Cox, Neuropeptide Y receptors; antisecretory control of intestinal epithelial 799 function, Auton Neurosci, vol.133, pp.76-85, 2007.

R. Pais, J. Rievaj, and P. Larraufie, Angiotensin II Type 1 Receptor-Dependent, vol.801, 2016.

, GLP-1 and PYY Secretion in Mice and Humans, Endocrinology, vol.157, pp.3821-3831

M. Okuno, T. Nakanishi, and Y. Shinomura, Peptide YY enhances NaCl and 803 water absorption in the rat colon in vivo, Experientia, vol.48, pp.47-50, 1992.

S. Fukumoto, M. Tatewaki, and T. Yamada, Short-chain fatty acids stimulate 805 colonic transit via intraluminal 5-HT release in rats, Am J Physiol Regul Integr Comp 806 Physiol, vol.284, pp.1269-1276, 2003.

C. Cherbut, L. Ferrier, and R. C. , Short-chain fatty acids modify colonic 808 motility through nerves and polypeptide YY release in the rat, Am J Physiol, vol.275, pp.1415-1422, 1998.

G. Cuche, J. C. Cuber, and C. H. Malbert, Ileal short-chain fatty acids inhibit gastric 811 motility by a humoral pathway, American journal of physiology Gastrointestinal and 812 liver physiology, vol.279, pp.925-930, 2000.

A. D. Vincent, X. Y. Wang, and S. P. Parsons, Abnormal absorptive colonic motor 814 activity in germ-free mice is rectified by butyrate, an effect possibly mediated by 815 mucosal serotonin, American journal of physiology Gastrointestinal and liver, vol.816, issue.315, pp.896-907, 2018.

R. Soret, J. Chevalier, D. Coppet, and P. , Short-chain fatty acids regulate the 818 enteric neurons and control gastrointestinal motility in rats, Gastroenterology, vol.138, pp.1772-1782, 2010.

C. J. Kelly, L. Zheng, and E. L. Campbell, Crosstalk between Microbiota, p.821, 2015.

, Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier 822 Function, Cell host & microbe, vol.17, pp.662-671

F. Faber, L. Tran, and M. X. Byndloss, Host-mediated sugar oxidation promotes 824 post-antibiotic pathogen expansion, Nature, vol.534, pp.697-699, 2016.

Y. Litvak, M. X. Byndloss, and R. M. Tsolis, Dysbiotic Proteobacteria expansion: 826 a microbial signature of epithelial dysfunction, Current opinion in microbiology, vol.39, pp.1-827, 2017.

F. Rivera-chavez, L. F. Zhang, and F. Faber, Depletion of Butyrate-Producing 829, 2016.

, Clostridia from the Gut Microbiota Drives an Aerobic Luminal Expansion of 830 Salmonella, Cell host & microbe, vol.19, pp.443-454

D. N. Bronner, F. Faber, and E. E. Olsan, Genetic Ablation of Butyrate Utilization 832, 2018.

, Attenuates Gastrointestinal Salmonella Disease. Cell host & microbe, vol.23, pp.266-273

L. Zheng, C. J. Kelly, and K. D. Battista, , vol.834, 2017.

, Epithelial Barrier Function through IL-10 Receptor-Dependent Repression of Claudin-835 2, Journal of immunology, vol.199, pp.2976-2984

H. B. Wang, P. Y. Wang, and X. Wang, Butyrate enhances intestinal epithelial 837 barrier function via up-regulation of tight junction protein Claudin-1 transcription, Dig, vol.838, 2012.

, Dis Sci, vol.57, pp.3126-3135

E. Gaudier, A. Jarry, and H. M. Blottiere, Butyrate specifically modulates MUC 840 gene expression in intestinal epithelial goblet cells deprived of glucose, American 841 journal of physiology Gastrointestinal and liver physiology, vol.287, pp.1168-1174, 2004.

K. Hase, L. Eckmann, and J. D. Leopard, Cell differentiation is a key determinant 843 of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human 844 colon epithelium, Infection and immunity, vol.70, pp.953-963, 2002.

R. Raqib, P. Sarker, and P. Bergman, Improved outcome in shigellosis associated 846 with butyrate induction of an endogenous peptide antibiotic, Proceedings of the 847 National Academy of Sciences of the United States of America, vol.103, pp.9178-9183, 2006.

Y. Zhao, F. Chen, and W. Wu, GPR43 mediates microbiota metabolite SCFA 849 regulation of antimicrobial peptide expression in intestinal epithelial cells via activation 850 of mTOR and STAT3, Mucosal immunology, vol.11, pp.752-762, 2018.

N. Fischer, E. Sechet, and R. Friedman, Histone deacetylase inhibition enhances 852 antimicrobial peptide but not inflammatory cytokine expression upon bacterial 853 challenge, Proceedings of the National Academy of Sciences of the United States of 854 America, vol.113, pp.2993-3001, 2016.

K. M. Maslowski, A. T. Vieira, and A. Ng, Regulation of inflammatory responses 856 by gut microbiota and chemoattractant receptor GPR43, Nature, vol.461, pp.1282-1286, 2009.

L. Macia, J. Tan, and A. T. Vieira, Metabolite-sensing receptors GPR43 and 858 GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the 859 inflammasome, Nature communications, vol.6, p.6734, 2015.

N. Huang, J. P. Katz, and D. R. Martin, Inhibition of IL-8 gene expression in Caco-861 2 cells by compounds which induce histone hyperacetylation, Cytokine, vol.9, pp.27-36, 1997.

K. Atarashi, T. Tanoue, and K. Oshima, Treg induction by a rationally selected 863 mixture of Clostridia strains from the human microbiota, Nature, vol.500, pp.232-236, 2013.

K. Atarashi, T. Tanoue, and T. Shima, Induction of colonic regulatory T cells by 865 indigenous Clostridium species, Science, vol.331, pp.337-341, 2011.

G. Goverse, R. Molenaar, and L. Macia, Diet-Derived Short Chain Fatty Acids, vol.867, 2017.

, Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells, Journal of immunology, vol.868, pp.2172-2181

J. Schulthess, S. Pandey, and M. Capitani, The Short Chain Fatty Acid Butyrate, vol.870, 2019.

, Imprints an Antimicrobial Program in Macrophages, Immunity, vol.50, pp.432-445

L. Liu, L. Li, and M. J. , Butyrate interferes with the differentiation and function 872 of human monocyte-derived dendritic cells, Cell Immunol, vol.277, pp.66-73, 2012.

B. E. Berndt, M. Zhang, and S. Y. Owyang, Butyrate increases IL-23 production by 874 stimulated dendritic cells, American journal of physiology Gastrointestinal and liver, vol.875, pp.1384-1392, 2012.

M. Kaisar, L. R. Pelgrom, and A. J. Van-der-ham, , 2017.

, Dendritic Cells to Prime Type 1 Regulatory T Cells via both Histone Deacetylase 878 Inhibition and G Protein-Coupled Receptor 109A Signaling, Frontiers in immunology, vol.879, issue.8, p.1429

P. V. Chang, L. Hao, and S. Offermanns, The microbial metabolite butyrate 881 regulates intestinal macrophage function via histone deacetylase inhibition, 2014.

, Proceedings of the National Academy of Sciences of the United States of America, vol.111, pp.2247-2252

J. Ji, D. Shu, and M. Zheng, Microbial metabolite butyrate facilitates M2 885 macrophage polarization and function, Scientific reports, vol.6, p.24838, 2016.

N. Singh, A. Gurav, and S. Sivaprakasam, Activation of Gpr109a, receptor for 887 niacin and the commensal metabolite butyrate, suppresses colonic inflammation and 888 carcinogenesis, Immunity, vol.40, pp.128-139, 2014.

M. A. Vinolo, G. J. Ferguson, and S. Kulkarni, SCFAs induce mouse neutrophil 890 chemotaxis through the GPR43 receptor, PloS one, vol.6, p.21205, 2011.

M. B. Geuking, J. Cahenzli, and M. A. Lawson, Intestinal bacterial colonization 892 induces mutualistic regulatory T cell responses, Immunity, vol.34, pp.794-806, 2011.

J. L. Round and S. K. Mazmanian, Inducible Foxp3+ regulatory T-cell development 894 by a commensal bacterium of the intestinal microbiota, Proceedings of the National 895 Academy of Sciences of the United States of America, vol.107, pp.12204-12209, 2010.

Y. Furusawa, Y. Obata, and S. Fukuda, Commensal microbe-derived butyrate 897 induces the differentiation of colonic regulatory T cells, Nature, vol.504, pp.446-450, 2013.

P. M. Smith, M. R. Howitt, and N. Panikov, The microbial metabolites, short-chain 899 fatty acids, regulate colonic Treg cell homeostasis, Science, vol.341, pp.569-573, 2013.

W. Wu, M. Sun, and F. Chen, Microbiota metabolite short-chain fatty acid acetate 901 promotes intestinal IgA response to microbiota which is mediated by GPR43, Mucosal 902 immunology, vol.10, pp.946-956, 2017.

M. Kim, Y. Qie, and J. Park, Gut Microbial Metabolites Fuel Host Antibody 904 Responses, Cell host & microbe, vol.20, pp.202-214, 2016.

H. N. Sanchez, J. B. Moroney, and H. Gan, 2020) B cell-intrinsic epigenetic modulation 906 of antibody responses by dietary fiber-derived short-chain fatty acids, Nature, vol.907, issue.11, p.60

J. E. Moskowitz and S. Devkota, Determinants of Microbial Antibiotic 909 Susceptibility: The Commensal Gut Microbiota Perspective, Cell host & microbe, vol.26, pp.910-574, 2019.

L. A. David, C. F. Maurice, and R. N. Carmody, Diet rapidly and reproducibly alters 912 the human gut microbiome, Nature, vol.505, pp.559-563, 2014.

A. Cotillard, S. P. Kennedy, and L. C. Kong, Dietary intervention impact on gut 914 microbial gene richness, Nature, vol.500, pp.585-588, 2013.

C. De-filippo, D. Cavalieri, D. Paola, and M. , Impact of diet in shaping gut 916 microbiota revealed by a comparative study in children from Europe and rural Africa, 2010.

, Proceedings of the National Academy of Sciences of the United States of America, vol.107, pp.14691-14696

E. E. Canfora, J. W. Jocken, and E. E. Blaak, Short-chain fatty acids in control of body 920 weight and insulin sensitivity, Nat Rev Endocrinol, vol.11, pp.577-591, 2015.

S. Sanna, N. R. Van-zuydam, and A. Mahajan, Causal relationships among the gut 922 microbiome, short-chain fatty acids and metabolic diseases, Nat Genet, vol.51, pp.600-605, 2019.

D. Haller, Nutrigenomics and IBD: the intestinal microbiota at the cross-road 924 between inflammation and metabolism, J Clin Gastroenterol, vol.44, issue.1, pp.6-9, 2010.

L. Zhao, F. Zhang, and X. Ding, Gut bacteria selectively promoted by dietary 926 fibers alleviate type 2 diabetes, Science, vol.359, pp.1151-1156, 2018.