T. W. Cullen, Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation, Science, vol.347, pp.170-175, 2015.

K. Mao, Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism, Nature, vol.554, pp.255-259, 2018.

P. Seksik, Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon, Gut, vol.52, pp.237-242, 2003.

M. F. Cochetière and . La, Resilience of the Dominant Human Fecal Microbiota upon Short-Course Antibiotic Challenge Resilience of the Dominant Human Fecal Microbiota upon Short-Course Antibiotic Challenge, J. Clin. Microbiol, vol.43, p.5588, 2005.

C. A. Lozupone, J. I. Stombaugh, J. I. Gordon, J. K. Jansson, and R. Knight, Diversity, stability and resilience of the human gut microbiota, Nature, vol.489, pp.220-250, 2012.

M. Scheffer, Anticipating Critical Transitions. Science, vol.338, pp.344-348, 2012.

P. G. Kopelman, Obesity as a medical problem, Nature, vol.404, pp.635-643, 2000.

H. Sokol, Specificities of the Fecal Microbiota in Inflammatory Bowel Disease, Inflamm Bowel Dis, vol.12, pp.106-111, 2006.

M. Kim, S. Hwang, E. Park, and J. Bae, Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation, Environ. Microbiol. Rep, 2013.

B. Björkstén, P. Naaber, E. Sepp, and M. Mikelsaar, The intestinal microflora in allergic Estonian and Swedish 2-year-old children, Clin. Exp. Allergy, vol.29, pp.342-346, 1999.

I. Sobhani, Microbial Dysbiosis in Colorectal Cancer (CRC) Patients, PLoS One, vol.6, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01190486

R. Loomba, Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease, Cell Metab, vol.25, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02466197

L. Chatelier and E. , Richness of human gut microbiome correlates with metabolic markers, Nature, vol.500, pp.541-546, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01190602

L. Gall, Metabolomics of Fecal Extracts Detects Altered Metabolic Activity of Gut Microbiota in Ulcerative Colitis and Irritable Bowel Syndrome, J. Proteome Res, pp.4208-4218, 2011.

C. Juste, Bacterial protein signals are associated with Crohn's disease, Gut, vol.63, pp.1566-1577, 2014.

P. Marteau and J. Dore, Gut Microbiota: A full-fledged organ, 2017.

M. J. Grehan, Durable alteration of the colonic microbiota by the administration of donor fecal flora, J. Clin. Gastroenterol, vol.44, pp.551-561, 2010.

C. M. Surawicz, Guidelines for Diagnosis, Treatment, and Prevention of Clostridium diffi cile Infections, Am. J. Gastroenterol, vol.108, pp.478-498, 2013.

S. B. Debast, European society of clinical microbiology and infectious diseases: Update of the treatment guidance document for Clostridium difficile infection, Clin. Microbiol. Infect, vol.20, pp.1-26, 2014.

G. Cammarota, European consensus conference on faecal microbiota transplantation in clinical practice, Gut, vol.66, pp.569-580, 2017.

L. P. Smits, K. E. Bouter, W. M. De-vos, T. J. Borody, and M. Nieuwdorp, Therapeutic potential of fecal microbiota transplantation, Gastroenterology, vol.145, pp.946-953, 2013.

C. Staley, Successful Resolution of Recurrent Clostridium difficile Infection using Freeze-Dried, Encapsulated Fecal Microbiota; Pragmatic Cohort Study, Am. J. Gastroenterol, vol.112, pp.940-947, 2017.

M. Mohty, Prevention of Dysbiosis Complications with Autologous Fecal Microbiota Transplantation (auto-FMT) in Acute Myeloid Leukemia (AML) Patients Undergoing Intensive Treatment (ODYSSEE study): First Results of a Prospective Multicenter Trial, Blood, vol.130, pp.2624-2624, 2017.

J. Dore, IHMS-SOP 03 V2: Standard operating procedure for fecal samples self-collection, 2015.

C. Schwintner, H. Affagard, and J. Dore, Microorganism sampling method, microorganism sampling device and sampling kit comprising such a sampling device, pp.2016170290-2016170291, 2015.

S. Giwa, The promise of organ and tissue preservation to transform medicine, Nature Biotechnology, vol.35, pp.530-542, 2017.

L. Wu, T. Orikasa, K. Tokuyasu, T. Shiina, and A. Tagawa, Applicability of vacuum-dehydrofreezing technique for the long-term preservation of fresh-cut eggplant: Effects of process conditions on the quality attributes of the samples, J. Food Eng, vol.91, pp.560-565, 2009.

M. Abadias, A. Benabarre, N. Teixidó, J. Usall, and I. Viñas, Effect of freeze drying and protectants on viability of the biocontrol yeast Candida sake, Int. J. Food Microbiol, vol.65, pp.173-82, 2001.

F. Fonseca, C. Béal, F. Mihoub, M. Marin, and G. Corrieu, Improvement of cryopreservation of Lactobacillus delbrueckii subsp. bulgaricus CFL1 with additives displaying different protective effects, Int. Dairy J, vol.13, pp.917-926, 2003.

C. Béal and F. Fonseca, Freezing of Probiotic Bacteria, Adv. Probiotic Technol, pp.179-212, 2015.

R. Massicotte, Comparison between flow cytometry and traditional culture methods for efficacy assessment of six disinfectant agents against nosocomial bacterial species, Front. Microbiol, vol.8, pp.1-14, 2017.

S. Tamburini, Comparison of quantitative PCR and flow cytometry as cellular viability methods to study bacterial membrane permeabilization following supercritical CO2 treatment, vol.159, pp.1056-1066, 2013.

L. Bircher, A. Geirnaert, F. Hammes, C. Lacroix, and C. Schwab, Effect of cryopreservation and lyophilization on viability and growth of strict anaerobic human gut microbes, Microb. Biotechnol, vol.11, pp.721-733, 2018.

B. M. Bravo-ferrada, Effect of protective agents and previous acclimation on ethanol resistance of frozen and freeze-dried Lactobacillus plantarum strains, Cryobiology, vol.71, pp.522-528, 2015.

Y. Feng and L. Xianglong, A full-automatic fecal microbiota separator, p.106929398, 2015.

J. C. Lagier, Culturing the human microbiota and culturomics, Nat. Rev. Microbiol, vol.16, pp.540-550, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01910305

J. Tap, Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults, Environ. Microbiol, vol.17, pp.4954-4964, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01439024

F. Escudié, FROGS: Find, Rapidly, OTUs with Galaxy Solution, Bioinformatics, 2017.

, John Morris for the loan of the controlled-rate freezer, and T. Meylheuc from the MIMA2-INRA microscopy platform for scanning electron images, ) and to the INRA MIGALE bioinformatics platform