G. E. Gillaspy, The role of phosphoinositides and inositol phosphates in plant cell signaling, Adv. Exp. Med. Biol, vol.991, pp.141-157, 2013.

G. E. Gillaspy, The cellular language of myo-inositol signaling, New Phytol, vol.192, pp.823-839, 2011.

F. A. Loewus and P. P. Murthy, myo-Inositol metabolism in plants, Plant Sci, vol.150, pp.1-19, 2000.

K. Ghoshdastidar, A. Chatterjee, A. Chatterjee, and A. L. Majumder, Evolutionary divergence of L-myo-inositol 1-phosphate synthase: significance of a 'core catalytic structure', Subcell. Biochem, vol.39, pp.315-340, 2006.

J. Torabinejad and G. E. Gillaspy, Functional genomics of inositol metabolism, Subcell. Biochem, vol.39, pp.47-70, 2006.

P. H. Meng, Crosstalks between myo-inositol metabolism, programmed cell death and basal immunity in Arabidopsis, PLoS One, vol.4, p.7364, 2009.

J. L. Donahue, The Arabidopsis thaliana Myo-inositol 1-phosphate synthase1 gene is required for Myo-inositol synthesis and suppression of cell death, Plant Cell, vol.22, pp.888-903, 2010.

Y. Luo, D-myo-inositol-3-phosphate affects phosphatidylinositol-mediated endomembrane function in Arabidopsis and is essential for auxin-regulated embryogenesis, Plant Cell, vol.23, pp.1352-1372, 2011.

L. Ma, Arabidopsis FHY3 and FAR1 Regulate Light-Induced myo-Inositol Biosynthesis and Oxidative Stress Responses by Transcriptional Activation of MIPS1, Mol. Plant, vol.9, pp.541-557, 2016.

L. V. Michaelson, J. A. Napier, D. Molino, and J. Faure, Plant sphingolipids: Their importance in cellular organization and adaption, Biochim. Biophys. Acta, vol.1861, pp.1329-1335, 2016.

U. Ali, H. Li, X. Wang, and L. Guo, Emerging Roles of Sphingolipid Signaling in Plant Response to Biotic and Abiotic Stresses, Mol. Plant, vol.11, pp.1328-1343, 2018.

J. E. Markham, Sphingolipids containing very-long-chain fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in arabidopsis, Plant Cell, vol.23, pp.2362-2378, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00855942

K. D. Luttgeharm, Overexpression of Arabidopsis Ceramide Synthases Differentially Affects Growth, Sphingolipid Metabolism, Programmed Cell Death, and Mycotoxin Resistance, Plant Physiol, vol.169, pp.1108-1117, 2015.

A. Zienkiewicz, Disruption of Arabidopsis neutral ceramidases 1 and 2 results in specific sphingolipid imbalances triggering different phytohormonedependent plant cell death programs, New Phytol, 2019.

Q. Bruggeman, Involvement of Arabidopsis Hexokinase1 in Cell Death Mediated by Myo-Inositol Accumulation, Plant Cell, vol.27, pp.1801-1814, 2015.

Q. Bruggeman, Chloroplast Activity and 3'phosphadenosine 5'phosphate Signaling Regulate Programmed Cell Death in Arabidopsis, Plant Physiol, vol.170, pp.1745-56, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01461818

Q. Bruggeman, The Polyadenylation Factor Subunit CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR30: A Key Factor of Programmed Cell Death and a Regulator of Immunity in Arabidopsis, Plant Physiol, vol.165, pp.732-746, 2014.

M. Ruegger, Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects, Plant Cell, vol.9, pp.745-757, 1997.

P. Gil, BIG: a calossin-like protein required for polar auxin transport in Arabidopsis, Genes Dev, vol.15, 1985.

T. Paciorek, Auxin inhibits endocytosis and promotes its own efflux from cells, Nature, vol.435, pp.1251-1256, 2005.

K. Kanyuka, Mutations in the huge Arabidopsis gene BIG affect a range of hormone and light responses, Plant J, vol.35, pp.57-70, 2003.

N. Yamaguchi, CRM1/BIG-mediated auxin action regulates Arabidopsis inflorescence development, Plant Cell Physiol, vol.48, pp.1275-1290, 2007.

N. Yamaguchi and Y. Komeda, The role of CORYMBOSA1/BIG and auxin in the growth of Arabidopsis pedicel and internode, Plant Sci, vol.209, pp.64-74, 2013.

A. Ivanova, A Functional Antagonistic Relationship between Auxin and Mitochondrial Retrograde Signaling Regulates Alternative Oxidase1a Expression in Arabidopsis, Plant Physiol, vol.165, pp.1233-1254, 2014.

T. J. Hearn, BIG regulates dynamic adjustment of circadian period in Arabidopsis thaliana, Plant Physiol, 2018.

J. He, The BIG protein distinguishes the process of CO2 -induced stomatal closure from the inhibition of stomatal opening by CO2, New Phytol, vol.218, pp.232-241, 2018.

R. Zhang, BIG regulates stomatal immunity and jasmonate production in Arabidopsis, New Phytol, vol.222, pp.335-348, 2019.

Q. Bruggeman, Involvement of Arabidopsis Hexokinase1 in Cell Death Mediated by Myo-Inositol Accumulation, Plant Cell, vol.27, pp.1801-1815, 2015.

C. Simon, The differential spatial distribution of secondary metabolites in Arabidopsis leaves reacting hypersensitively to Pseudomonas syringae pv. tomato is dependent on the oxidative burst, J. Exp. Bot, vol.61, pp.3355-3370, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00508594

H. Chen and L. Xiong, myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development, J. Biol. Chem, vol.285, pp.24238-24247, 2010.

Y. Chang, J. S. Imam, and M. F. Wilkinson, The nonsense-mediated decay RNA surveillance pathway, Annu. Rev. Biochem, vol.76, pp.51-74, 2007.

Z. Du, X. Zhou, Y. Ling, Z. Zhang, and Z. Su, agriGO: a GO analysis toolkit for the agricultural community, Nucleic Acids Res, vol.38, pp.64-70, 2010.

X. Guo, W. Lu, Y. Ma, Q. Qin, and S. Hou, The BIG gene is required for auxinmediated organ growth in Arabidopsis, Planta, vol.237, pp.1135-1147, 2013.

K. D. Luttgeharm, A. N. Kimberlin, and E. B. Cahoon, Plant Sphingolipid Metabolism and Function, Subcell. Biochem, vol.86, pp.249-286, 2016.

J. E. Markham, J. Li, E. B. Cahoon, and J. G. Jaworski, Separation and identification of major plant sphingolipid classes from leaves, J. Biol. Chem, vol.281, pp.22684-22694, 2006.

S. Chaouch and G. Noctor, Myo-inositol abolishes salicylic acid-dependent cell death and pathogen defence responses triggered by peroxisomal hydrogen peroxide, New Phytol, vol.188, pp.711-719, 2010.

L. Meteignier, Translatome analysis of an NB-LRR immune response identifies important contributors to plant immunity in Arabidopsis, J. Exp. Bot, vol.68, pp.2333-2344, 2017.

L. Qi, Arabidopsis thaliana plants differentially modulate auxin biosynthesis and transport during defense responses to the necrotrophic pathogen Alternaria brassicicola, New Phytol, vol.195, pp.872-882, 2012.

J. Sun, Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation, Plant Cell, vol.21, pp.1495-1511, 2009.

J. H. Hong, A Sacrifice-for-Survival Mechanism Protects Root Stem Cell Niche from Chilling Stress, Cell, vol.170, pp.102-113, 2017.

P. Gawronski, Mitogen-activated protein kinase 4 is a salicylic acidindependent regulator of growth but not of photosynthesis in Arabidopsis, Mol. Plant, vol.7, pp.1151-1166, 2014.

S. König, Arabidopsis mutants of sphingolipid fatty acid ?-hydroxylases accumulate ceramides and salicylates, New Phytol, vol.196, pp.1086-1097, 2012.

F. Samson, FLAGdb/FST: a database of mapped flanking insertion sites (FSTs) of Arabidopsis thaliana T-DNA transformants, Nucleic Acids Res, vol.30, pp.94-97, 2002.

J. M. Alonso, Genome-wide insertional mutagenesis of Arabidopsis thaliana, Science, vol.301, pp.653-657, 2003.

D. I. Pacurar, A collection of INDEL markers for map-based cloning in seven Arabidopsis accessions, J. Exp. Bot, vol.63, pp.2491-2501, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004212

D. Latrasse, The quest for epigenetic regulation underlying unisexual flower development in Cucumis melo, Epigenetics Chromatin, vol.10, p.22, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01594682

C. Le-roux, The hnRNP-Q protein LIF2 participates in the plant immune response, PLoS One, vol.9, p.99343, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204050

F. Tellier, A. Maia-grondard, I. Schmitz-afonso, and J. Faure, Comparative plant sphingolipidomic reveals specific lipids in seeds and oil, Phytochemistry, vol.103, pp.50-58, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01024458