Y. Elad, I. Pertot, A. M. Prado, and A. Stewart, Plant Hosts of Botrytis spp

, Botrytis -the Fungus, the Pathogen and its Management in 594

, Agricultural Systems, pp.413-486, 2016.

S. Droby and A. Lichter, Post-Harvest Botrytis Infection: Etiology, p.596

, Botrytis: Biology, 597 Pathology and Control, pp.349-367, 2007.

G. Romanazzi, J. L. Smilanick, E. Feliziani, and S. Droby, Integrated management of 599 postharvest gray mold on fruit crops, Postharvest Biology and Technology, vol.113, pp.69-76, 2016.

C. González, N. Brito, and A. Sharon, Infection Process and Fungal Virulence Factors

, Botrytis -the Fungus, the Pathogen and its Management in 602

, Agricultural Systems, pp.229-246, 2016.

O. Windram, C. Stoker, and K. Denby, Overview of Plant Defence Systems: Lessons from 604

A. Cinerea, Botrytis -the, p.605

, Fungus, the Pathogen and its Management in Agricultural Systems, pp.335-360, 2016.

J. Schumacher, Signal Transduction Cascades Regulating Differentiation and Virulence in 608

, Botrytis -the Fungus, the Pathogen and its 609

S. H. Yang, A. D. Sharrocks, and A. J. Whitmarsh, Transcriptional regulation by the MAP 612 kinase signaling cascades, Gene, vol.320, pp.3-21, 2003.

L. P. Hamel, M. C. Nicole, S. Duplessis, and B. E. Ellis, Mitogen-activated protein kinase 614 signaling in plant-interacting fungi: distinct messages from conserved messengers, Plant Cell, vol.615, issue.4, pp.1327-51, 2012.

M. C. Gustin, J. Albertyn, M. Alexander, and K. Davenport, MAP kinase pathways in the yeast 617 Saccharomyces cerevisiae, vol.62, pp.1264-300, 1998.

B. B. Fuchs and E. Mylonakis, Our paths might cross: the role of the fungal cell wall integrity 619 pathway in stress response and cross talk with other stress response pathways, Eukaryot Cell, vol.620, issue.11, pp.1616-1641, 2009.

L. Zheng, M. Campbell, J. Murphy, S. Lam, and J. R. Xu, The BMP1 gene is essential for 622 pathogenicity in the gray mold fungus Botrytis cinerea, Mol Plant Microbe Interact, vol.13, issue.7, pp.724-756, 2000.

C. B. Michielse, M. Becker, J. Heller, J. Moraga, I. G. Collado et al., , p.640

, Botrytis cinerea Reg1 Protein, a Putative Transcriptional Regulator, Is Required for 641

. Pathogenicity, Conidiogenesis, and the Production of Secondary Metabolites, Mol Plant, vol.642

, Microbe In, vol.24, issue.9, pp.1074-1085, 2011.

N. Temme, B. Oeser, M. Massaroli, J. Heller, A. Simon et al.,

P. Viaud and . Tudzynski, BcAtf1, a global regulator, controls various differentiation processes 645 and phytotoxin production in Botrytis cinerea, Mol Plant Pathol, vol.13, issue.7, pp.704-718, 2012.

A. Herivaux, Y. S. So, A. Gastebois, J. P. Latge, J. P. Bouchara et al., , p.647

, Major Sensing Proteins in Pathogenic Fungi: The Hybrid Histidine Kinase Family, PLoS 648 Pathog, vol.12, issue.7, p.1005683, 2016.

H. Avenot, P. Simoneau, B. Iacomi-vasilescu, and N. Bataille-simoneau, Characterization of 650 mutations in the two-component histidine kinase gene AbNIK1 from Alternaria brassicicola 651 that confer high dicarboximide and phenylpyrrole resistance, Curr Genet, vol.47, issue.4, pp.234-277, 2005.

T. Motoyama, K. Kadokura, T. Ohira, A. Ichiishi, M. Fujimura et al., 653 A two-component histidine kinase of the rice blast fungus is involved in osmotic stress 654 response and fungicide action, Fungal Genet Biol, vol.42, issue.3, pp.200-212, 2005.

N. Ochiai, M. Fujimura, T. Motoyama, A. Ichiishi, R. Usami et al.,

. Yamaguchi, Characterization of mutations in the two-component histidine kinase gene that 657 confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa, p.658

, Pest Manag Sci, vol.57, issue.5, pp.437-479, 2001.

M. Viaud, S. Fillinger, W. Liu, J. S. Polepalli, P. L. Pecheur et al., , p.660

L. Legendre, A class III histidine kinase acts as a novel virulence factor in Botrytis cinerea, p.661

, Mol Plant Microbe In, vol.19, issue.9, pp.1042-1050, 2006.

W. W. Liu, P. Leroux, and S. Fillinger, The HOG1-like MAP kinase Sak1 of Botrytis cinerea 663 is negatively regulated by the upstream histidine kinase Bos1 and is not involved in 664 dicarboximide-and phenylpyrrole-resistance, Fungal Genetics and Biology, vol.45, issue.7, pp.665-1062, 2008.

J. Heller, N. Ruhnke, J. J. Espino, M. Massaroli, I. G. Collado et al., The 667 mitogen-activated protein kinase BcSak1 of Botrytis cinerea is required for pathogenic 668 development and has broad regulatory functions beyond stress response, Mol Plant Microbe, vol.669, issue.6, pp.802-818, 2012.

M. Breker and M. Schuldiner, The emergence of proteome-wide technologies: systematic 671 analysis of proteins comes of age, Nature Reviews Molecular Cell Biology, vol.15, issue.7, p.453, 2014.

T. Li, Y. Wang, J. Liu, K. Feng, Z. Xu et al., Advances in genomic, p.674

, transcriptomic, proteomic, and metabolomic approaches to study biotic stress in fruit crops, p.675

, Critical Reviews in Biotechnology, vol.39, issue.5, pp.680-692, 2019.

S. Cherrad, V. Girard, C. Dieryckx, I. R. Goncalves, J. W. Dupuy et al., , p.677

C. Job, D. Job, S. Vacher, and N. Poussereau, Proteomic analysis of proteins secreted by Botrytis 678 cinerea in response to heavy metal toxicity, Metallomics, vol.4, issue.8, pp.835-846, 2012.

M. Davanture, J. Dumur, N. Bataillé-simoneau, C. Campion, B. Valot et al.,

S. Simoneau and . Fillinger, Phosphoproteome profiles of the phytopathogenic fungi Alternaria 681 brassicicola and Botrytis cinerea during exponential growth in axenic cultures, PROTEOMICS, vol.682, pp.1639-1645, 2014.

F. J. Fernandez-acero, T. Colby, A. Harzen, J. M. Cantoral, J. J. Schmidt-;-f et al., Proteomic 684 analysis of the phytopathogenic fungus Botrytis cinerea during cellulose degradation, p.690

J. A. Lopez, J. Jorrin, and J. M. , Proteomic analysis of phytopathogenic fungus Botrytis 691 cinerea as a potential tool for identifying pathogenicity factors, therapeutic targets and for 692 basic research, Archives of Microbiology, vol.187, issue.3, pp.207-215, 2007.

R. Gonzalez-fernandez, K. Aloria, J. Valero-galvan, I. Redondo, J. M. Arizmendi et al.,

. Jorrin-novo, Proteomic analysis of mycelium and secretome of different Botrytis cinerea 695 wild-type strains, Journal of proteomics, 2013.

E. Lineiro, C. Chiva, J. M. Cantoral, E. Sabido, and F. J. Fernandez-acero, Phosphoproteome 697 analysis of B. cinerea in response to different plant-based elicitors, Journal of proteomics, vol.139, pp.84-94, 2016.

E. Lineiro, C. Chiva, J. M. Cantoral, E. Sabido, and F. J. Fernandez-acero, Modifications of 700 fungal membrane proteins profile under pathogenicity induction: A proteomic analysis of 701

, Botrytis cinerea membranome, Proteomics, vol.16, issue.17, pp.2363-2376, 2016.

P. Shah, J. A. Atwood, R. Orlando, H. E. Mubarek, G. K. Podila et al., , p.703

, Comparative Proteomic Analysis of Botrytis cinerea Secretome, Journal of Proteome 704 Research, vol.8, issue.3, pp.1123-1130, 2009.

P. Shah, G. Gutierrez-sanchez, R. Orlando, and C. Bergmann, A proteomic study of pectin-706 degrading enzymes secreted by Botrytis cinerea grown in liquid culture, Proteomics, vol.9, issue.11, pp.3126-3135, 2009.

P. Büttner, F. Koch, K. Voigt, T. Quidde, S. Risch et al., , p.709

, Variations in ploidy among isolates of Botrytis cinerea: implications for genetic and 710 molecular analyses, Current Genetics, vol.25, issue.5, pp.445-450, 1994.

R. Craig and R. C. Beavis, TANDEM: matching proteins with tandem mass spectra, p.712

, Bioinformatics, vol.20, issue.9, pp.1466-1473, 2004.

J. Amselem, C. A. Cuomo, J. A. Van-kan, M. Viaud, E. P. Benito et al.,

R. P. Coutinho, P. S. De-vries, S. Dyer, E. Fillinger, L. Fournier et al.,

K. M. Lapalu, J. Plummer, E. Pradier, A. Quévillon, A. Sharon et al.,

P. Tudzynski, P. Tudzynski, M. Wincker, V. R. Andrew, R. E. Anthouard et al.,

O. Benoit, B. Bouzid, Z. Brault, M. Chen, J. Choquer et al.,

D. Silva, A. Gautier, C. Giraud, T. Giraud, C. Gonzalez et al.,

B. J. Henrissat, C. Howlett, M. Kodira, A. Kretschmer, M. Lappartient et al.,

C. Mauceli, B. Neuvéglise, M. Oeser, J. Pearson, N. Poulain et al.,

J. Rascle, B. Schumacher, A. Ségurens, E. Sexton, C. Silva et al., , p.722

M. Templeton, C. Yandava, O. Yarden, Q. Zeng, J. A. Rollins et al., , p.723

, Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and 724 Botrytis cinerea, PLoS Genet, vol.7, issue.8, p.1002230, 2011.

R. D. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger et al.,

G. Gunasekaran, K. Ceric, L. Forslund, E. L. Holm, S. R. Sonnhammer et al., , p.727

, The Pfam protein families database, Nucleic Acids Research, vol.38, issue.1, pp.211-222, 2010.

O. Langella, B. Valot, T. Balliau, M. Blein-nicolas, L. Bonhomme et al., , p.729

. X!tandempipeline, A Tool to Manage Sequence Redundancy for Protein Inference and 730

, Phosphosite Identification, Journal of Proteome Research, vol.16, issue.2, pp.494-503, 2017.

O. Langella, B. Valot, D. Jacob, T. Balliau, R. Flores et al., , p.732

, Management and dissemination of MS proteomic data with PROTICdb: example of a 733 quantitative comparison between methods of protein extraction, PROTEOMICS, vol.13, issue.9, 2013.

S. Priebe, C. Kreisel, F. Horn, R. Guthke, and J. Linde, FungiFun2: a comprehensive online 740 resource for systematic analysis of gene lists from fungal species, Bioinformatics, vol.31, issue.3, p.741, 2015.

B. Blanco-ulate, G. Allen, A. L. Powell, and D. Cantu, Draft Genome Sequence of Botrytis 743 cinerea BcDW1, Inoculum for Noble Rot of Grape Berries, Genome announcements, vol.1, issue.3, p.744, 2013.

J. J. Espino, G. Gutierrez-sanchez, N. Brito, P. Shah, R. Orlando et al., The 746 Botrytis cinerea early secretome, Proteomics, vol.10, issue.16, pp.3020-3054, 2010.

U. Siegmund and A. Viefhues, Reactive Oxygen Species in the Botrytis -Host Interaction, Botrytis -the Fungus, the Pathogen and its Management, vol.748, p.749

, Agricultural Systems, pp.269-289, 2016.

D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder et al.,

N. T. Simonovic, J. H. Doncheva, P. Morris, L. J. Bork, C. V. Jensen et al., STRING v11: 752 protein-protein association networks with increased coverage, supporting functional discovery 753 in genome-wide experimental datasets, Nucleic Acids Res, vol.47, issue.D1, pp.607-613, 2019.

A. J. Enright, S. Van-dongen, and C. A. Ouzounis, An efficient algorithm for large-scale 755 detection of protein families, Nucleic Acids Res, vol.30, issue.7, pp.1575-84, 2002.

J. A. Van-kan, J. H. Stassen, A. Mosbach, T. A. Van-der-lee, L. Faino et al., , p.757

S. Papasotiriou, M. F. Zhou, E. Seidl, D. Cottam, M. Edel et al.,

S. Dietrich, G. Widdison, and . Scalliet, A gapless genome sequence of the fungus Botrytis cinerea, p.759

, Mol Plant Pathol, vol.18, issue.1, pp.75-89, 2017.

C. Mering, M. Huynen, D. Jaeggi, S. Schmidt, P. Bork et al., STRING: a database 761 of predicted functional associations between proteins, Nucleic Acids Res, vol.31, issue.1, p.258, 2003.

I. G. Collado and M. Viaud, Botrytis -the Fungus, the 765 Pathogen and its Management in Agricultural Systems, Secondary Metabolism in Botrytis cinerea: Combining Genomic 764 and Metabolomic Approaches, p.766

. Cham, , pp.291-313, 2016.

F. R. Rossi, A. Gárriz, M. Marina, F. M. Romero, M. E. Gonzalez et al.,

. Pieckenstain, The Sesquiterpene Botrydial Produced by Botrytis cinerea Induces the 769

, Hypersensitive Response on Plant Tissues and Its Action Is Modulated by Salicylic Acid and 770

J. Signaling, Mol Plant Microbe In, vol.24, issue.8, pp.888-896, 2011.

B. Dalmais, J. Schumacher, J. Moraga, L. E. , B. Tudzynski et al., , p.772

, The Botrytis cinerea phytotoxin botcinic acid requires two polyketide synthases for 773 production and has a redundant role in virulence with botrydial, Mol Plant Pathol, vol.12, issue.6, pp.564-79, 2011.

J. Schumacher, A. Simon, K. C. Cohrs, S. Traeger, A. Porquier et al.,

. Tudzynski, The VELVET Complex in the Gray Mold Fungus Botrytis cinerea: Impact of 777

, BcLAE1 on Differentiation, Secondary Metabolism, and Virulence, vol.778, pp.659-674, 2015.

J. Schumacher, DHN melanin biosynthesis in the plant pathogenic fungus Botrytis 780 cinerea is based on two developmentally regulated key enzyme (PKS)-encoding genes, p.781

, Molecular Microbiology, vol.99, issue.4, pp.729-748, 2016.

A. Blomberg and L. Adler, Roles of glycerol and glycerol-3-phosphate dehydrogenase 783 (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae, Journal of Bacteriology, vol.784, issue.2, pp.1087-1092, 1989.

T. Dulermo, C. Rascle, G. Billon-grand, E. Gout, R. Bligny et al., Novel insights 786 into mannitol metabolism in the fungal plant pathogen Botrytis cinerea, Biochem J, vol.427, issue.2

M. Meena, V. Prasad, A. Zehra, V. K. Gupta, and R. S. Upadhyay, Mannitol metabolism 789 during pathogenic fungal-host interactions under stressed conditions, Front Microbiol, vol.6, p.1019, 2015.

N. A. Gow, J. Latge, and C. A. Munro, The Fungal Cell Wall: Structure, Biosynthesis, 792 and Function, vol.5, 2017.

M. Isasa, C. M. Rose, S. Elsasser, J. Navarrete-perea, J. A. Paulo et al., , p.794

. Multiplexed, Proteome-Wide Protein Expression Profiling: Yeast Deubiquitylating Enzyme 795 Knockout Strains, J Proteome Res, vol.14, issue.12, pp.5306-5323, 2015.

H. Liu, S. Sang, H. Wang, X. Ren, Y. Tan et al., Comparative 797 proteomic analysis reveals the regulatory network of the veA gene during asexual and sexual 798 spore development of Aspergillus cristatus, Bioscience reports, vol.38, issue.4, 2018.

H. Zhang, H. Ma, X. Xie, J. Ji, Y. Dong et al., , p.800

, Comparative proteomic analyses reveal that the regulators of G-protein signaling proteins 801 regulate amino acid metabolism of the rice blast fungus Magnaporthe oryzae, Proteomics, vol.802, pp.2508-2530, 2014.

N. Müller, M. Leroch, J. Schumacher, D. Zimmer, A. Konnel et al.,

F. Scheuring, T. Sommer, M. Muhlhaus, M. Schroda, and . Hahn, Investigations on VELVET 805 regulatory mutants confirm the role of host tissue acidification and secretion of proteins in the 806 pathogenesis of Botrytis cinerea, The New phytologist, vol.219, issue.3, pp.1062-1074, 2018.

U. Carrasco-navarro, R. Vera-estrella, B. J. Barkla, E. Zuniga-leon, and H. Reyes-vivas, , vol.808

F. J. Fernandez and F. Fierro, Proteomic analysis of the signaling pathway mediated by the 809

, heterotrimeric G alpha protein Pga1 of Penicillium chrysogenum, Microbial Cell Factories, vol.15, p.810, 2016.

J. M. Geddes, M. Caza, D. Croll, N. Stoynov, L. J. Foster et al., Analysis of 812 the Protein Kinase A-Regulated Proteome of Cryptococcus neoformans Identifies a Role for 813 the Ubiquitin-Proteasome Pathway in Capsule Formation, Mbio, vol.7, issue.1, 2016.

K. C. Tan, J. L. Heazlewood, A. H. Millar, R. P. Oliver, and P. S. Solomon, Proteomic 815 identification of extracellular proteins regulated by the Gna1 G alpha subunit in Stagonospora 816 nodorum, Mycological Research, vol.113, pp.523-531, 2009.

Y. Yin, S. Wu, C. Chui, T. Ma, H. Jiang et al., The MAPK kinase BcMkk1 818 suppresses oxalic acid biosynthesis via impeding phosphorylation of BcRim15 by BcSch9 in 819 Botrytis cinerea, PLOS Pathogens, vol.14, issue.9, p.1007285, 2018.

C. Kunz, E. Vandelle, S. Rolland, B. Poinssot, C. Bruel et al.,

R. Moreau, A. Vedel, M. Pugin, and . Boccara, , p.822

, Botrytis cinerea with impaired plant colonization capacity, New Phytologist, vol.170, issue.3, p.823, 2006.

J. P. Gaughran, M. H. Lai, D. R. Kirsch, and S. J. Silverman, Nikkomycin Z is a specific 825 inhibitor of Saccharomyces cerevisiae chitin synthase isozyme Chs3 in vitro and in vivo, Journal of Bacteriology, vol.826, pp.5857-5860, 1994.

M. Kopecká and M. Gabriel, The influence of Congo red on the cell wall and (1 ? 3)-?-d-828 glucan microfibril biogenesis in Saccharomyces cerevisiae, Archives of Microbiology, vol.158, issue.2, pp.115-126, 1992.

M. Rosenfeld, Ultrafiltration of proteins through cellophane membranes of enhanced 831 permeability, Biochimica et biophysica acta, vol.75, pp.241-249, 1963.

B. L. Lamberts and T. S. Meyer, Permeability of cellophane membranes to parotid during 833 dialysis, Experientia, vol.35, issue.2, pp.165-171, 1979.

W. J. Belden and C. Barlowe, Role of Erv29p in Collecting Soluble Secretory Proteins into

A. Brands, T. , and .. D. Ho, Function of a plant stress-induced gene, HVA22. Synthetic 837 enhancement screen with its yeast homolog reveals its role in vesicular traffic, Physiology, vol.838, issue.3, pp.1121-1131, 2002.

G. J. Steel, A. J. Laude, A. Boojawan, D. J. Harvey, and A. Morgan, Biochemical analysis of 840 the Saccharomyces cerevisiae SEC18 gene product: implications for the molecular 841 mechanism of membrane fusion, Biochemistry, vol.38, issue.24, pp.7764-7772, 1999.

H. Wang, S. K. Lockwood, M. F. Hoeltzel, and J. W. Schiefelbein, The ROOT HAIR 843 DEFECTIVE3 gene encodes an evolutionarily conserved protein with GTP-binding motifs 844 and is required for regulated cell enlargement in Arabidopsis, Genes & development, vol.11, issue.6, pp.799-811, 1997.

Z. Zhang, G. Qin, B. Li, and S. Tian, Knocking Out Bcsas1 in Botrytis cinerea Impacts 847

, Development, and Secretion of Extracellular Proteins, Which Decreases Virulence, Growth, p.848

, Mol Plant Microbe In, vol.27, issue.6, pp.590-600, 2014.

J. Schumacher, M. Viaud, A. Simon, and B. Tudzynski, The Galpha subunit BCG1, the 850 phospholipase C (BcPLC1) and the calcineurin phosphatase co-ordinately regulate gene 851 expression in the grey mould fungus Botrytis cinerea, Mol Microbiol, vol.67, issue.5, pp.1027-50, 2008.

M. Viaud, J. Schumacher, A. Porquier, and A. Simon, Regulation of Secondary Metabolism 853 in the Gray Mold Fungus Botrytis cinerea, Host -Pathogen, 2016.