J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in globocan 2012, Int J Cancer, vol.136, issue.5, pp.359-86, 2015.

C. Tanase, I. Ogrezeanu, and C. Badiu, Molecular Pathology of Pituitary Adenomas, p.130, 2012.

G. A. Calin, C. D. Dumitru, M. Shimizu, R. Bichi, S. Zupo et al., Frequent deletions and down-regulation of micro-rna genes mir15 and mir16 at 13q14 in chronic lymphocytic leukemia, Proc Natl Acad Sci, vol.99, issue.24, pp.15524-15533, 2002.

Y. Peng and C. M. Croce, The role of microRNAs in human cancer, Signal Transduct Target Ther, vol.1, p.15004, 2016.

E. R. Sauter and N. Patel, Body fluid micro (mi) rnas as biomarkers for human cancer, J Nucleic Acids Investig, vol.2, issue.1, p.1, 2011.

Y. He, J. Lin, D. Kong, M. Huang, C. Xu et al., Current state of circulating microRNAs as cancer biomarkers

, Clin Chem, vol.61, issue.9, pp.1138-1155, 2015.

F. Calore, F. Lovat, and M. Garofalo, Non-coding rnas and cancer, Int J Mol Sci, vol.14, issue.8, pp.17085-110, 2013.

M. Ferracin, A. Veronese, and M. Negrini, Micromarkers: miRNAs in cancer diagnosis and prognosis, Expert Rev Mol Diagn, vol.10, issue.3, pp.297-308, 2010.

M. Fabbri, Non-coding RNAs and Cancer, 2014.

B. Liu, J. Li, and M. J. Cairns, Identifying miRNAs, targets and functions, Brief Bioinform, vol.15, issue.1, pp.1-19, 2012.

M. M. Akhtar, L. Micolucci, M. S. Islam, F. Olivieri, and A. D. Procopio, Bioinformatic tools for microRNA dissection, Nucleic Acids Res, vol.44, issue.1, pp.24-44, 2015.

A. Bhattacharya, J. D. Ziebarth, and Y. Cui, Somamir: a database for somatic mutations impacting microRNA function in cancer, Nucleic Acids Res, vol.41, issue.D1, pp.977-82, 2012.

A. Kozomara and S. Griffiths-jones, mirbase: integrating microRNA annotation and deep-sequencing data, Nucleic Acids Res, vol.39, issue.suppl_1, pp.152-159, 2010.

C. L. Bartels and G. J. Tsongalis, MicroRNAs: novel biomarkers for human cancer, Clin Chem, vol.55, issue.4, pp.623-654, 2009.

M. A. Cortez, C. Bueso-ramos, J. Ferdin, G. Lopez-berestein, A. K. Sood et al., MicroRNAs in body fluids-the mix of hormones and biomarkers, Nat Rev Clin Oncol, vol.8, issue.8, p.467, 2011.

M. V. Iorio and C. M. Croce, MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. a comprehensive review, EMBO Mol Med, vol.4, issue.3, pp.143-59, 2012.

W. Gao, H. Shen, L. Liu, J. Xu, J. Xu et al., Mir-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis, J Cancer Res Clin Oncol, vol.137, issue.4, pp.557-66, 2011.

F. Zhi, X. Chen, S. Wang, X. Xia, Y. Shi et al., The use of hsa-mir-21, hsa-mir-181b and hsa-mir-106a as prognostic indicators of astrocytoma, Eur J Cancer, vol.46, issue.9, pp.1640-1649, 2010.

L. Yan, X. Huang, Q. Shao, M. Huang, L. Deng et al., MicroRNA mir-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis, Rna, vol.14, issue.11, pp.2348-60, 2008.

D. Wang, Z. Fan, F. Liu, and J. Zuo, Hsa-mir-21 and hsa-mir-29 in tissue as potential diagnostic and prognostic biomarkers for gastric cancer, Cell Physiol Biochem, vol.37, issue.4, pp.1454-62, 2015.

A. G. Telonis, R. Magee, P. Loher, I. Chervoneva, E. Londin et al., Knowledge about the presence or absence of miRNA isoforms (isomirs) can successfully discriminate amongst 32 tcga cancer types, Nucleic Acids Res, vol.45, issue.6, pp.2973-85, 2017.

M. Yousef, J. Allmer, and W. Khalifa, Feature selection for microRNA target prediction comparison of one-class feature selection methodologies, Conference Paper. DSpace@IZTECH, 2016.

W. Tang, S. Wan, Z. Yang, A. E. Teschendorff, and Q. Zou, Tumor origin detection with tissue-specific miRNA and dna methylation markers, Bioinformatics, vol.34, issue.3, pp.398-406, 2017.

Y. Piao, M. Piao, and K. H. Ryu, Multiclass cancer classification using a feature subset-based ensemble from microRNA expression profiles, Comput Biol Med, vol.80, pp.39-44, 2017.

J. N. Weinstein, E. A. Collisson, G. B. Mills, K. Shaw, B. A. Ozenberger et al., The cancer genome atlas pan-cancer analysis project, Nat Genet, vol.45, issue.10, p.1113, 2013.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in python, J Mach Learn Res, vol.12, pp.2825-2855, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

N. Altman and M. Krzywinski, Points of Significance: Ensemble methods: bagging and random forests, Nat Publ Group, vol.14, issue.10, pp.933-937, 2017.

Z. M. Hira and D. F. Gillies, A review of feature selection and feature extraction methods applied on microarray data, Adv Bioinforma, vol.2015, pp.1-13, 2015.

A. V. Lazo and P. Rathie, On the entropy of continuous probability distributions (corresp, IEEE Trans Inf Theory, vol.24, issue.1, pp.120-122, 1978.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, Gene selection for cancer classification using support vector machines, Mach Learn, vol.46, issue.1-3, pp.389-422, 2002.

J. Friedman, T. Hastie, and R. Tibshirani, Regularization paths for generalized linear models via coordinate descent, J Stat Softw, vol.33, issue.1, p.1, 2010.

A. Sokolov, D. E. Carlin, E. O. Paull, R. Baertsch, and J. M. Stuart, Pathway-based genomics prediction using generalized elastic net, PLoS Comput Biol, vol.12, issue.3, p.1004790, 2016.

A. Basu, R. Mitra, H. Liu, S. L. Schreiber, and P. A. Clemons, Rwen: Response-weighted elastic net for prediction of chemosensitivity of cancer cell lines, Bioinformatics, vol.1, p.8, 2018.

R. Tibshirani, Regression shrinkage and selection via the lasso, J R Stat Soc Ser B Methodol, vol.58, issue.1, pp.267-88, 1996.

V. Trevino and F. Falciani, Galgo: an r package for multivariate variable selection using genetic algorithms, Bioinformatics, vol.22, issue.9, pp.1154-1160, 2006.

T. Abeel, T. Helleputte, Y. Van-de-peer, P. Dupont, and Y. Saeys, Robust biomarker identification for cancer diagnosis with ensemble feature selection methods, Bioinformatics, vol.26, issue.3, pp.392-400, 2009.

B. Seijo-pardo, I. Porto-diaz, V. Bolon-canedo, A. , and A. , Ensemble feature selection: Homogeneous and heterogeneous approaches. Knowl-Based Syst, vol.118, pp.124-163, 2017.

P. Lin, Y. Chiu, S. Banerjee, K. Park, J. M. Mosquera et al., Epigenetic repression of mir-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression, Cancer Res, vol.73, issue.3, pp.1232-1276, 2013.

I. Casanova-salas, J. Rubio-briones, A. Calatrava, C. Mancarella, E. Masiá et al., Identification of mir-187 and mir-182 as biomarkers of early diagnosis and prognosis in patients with prostate cancer treated with radical prostatectomy, J Urol, vol.192, issue.1, pp.252-261, 2014.

M. Peña-chilet, M. T. Martínez, J. A. Pérez-fidalgo, L. Peiró-chova, S. S. Oltra et al., MicroRNA profile in very young women with breast cancer, BMC Cancer, vol.14, issue.1, p.529, 2014.

H. Jang, H. Lee, B. M. Burt, G. K. Lee, K. Yoon et al., Integrated genomic analysis of recurrence-associated small non-coding rnas in oesophageal cancer, Gut, vol.66, issue.2, pp.215-240, 2017.

S. L. Romero-cordoba, S. Rodriguez-cuevas, V. Bautista-pina, A. Maffuz-aziz, D. Ippolito et al., Loss of function of mir-342-3p results in mct1 over-expression and contributes to oncogenic metabolic reprogramming in triple negative breast cancer, Sci Rep, vol.8, issue.1, p.12252, 2018.

Y. Murakami, A. Tamori, S. Itami, T. Tanahashi, H. Toyoda et al., The expression level of mir-18b in hepatocellular carcinoma is associated with the grade of malignancy and prognosis, BMC Cancer, vol.13, issue.1, p.99, 2013.

E. A. Vucic, K. L. Thu, L. A. Pikor, K. S. Enfield, J. Yee et al., Smoking status impacts microRNA mediated prognosis and lung adenocarcinoma biology, BMC Cancer, vol.14, issue.1, p.778, 2014.

C. Network, Comprehensive molecular portraits of human breast tumours, Nature, vol.490, issue.7418, p.61, 2012.

A. Colaprico, T. C. Silva, C. Olsen, L. Garofano, C. Cava et al., Tcgabiolinks: an r/bioconductor package for integrative analysis of tcga data, Nucleic Acids Res, vol.44, issue.8, p.71, 2015.

M. Weiss, Your guide to the breast cancer pathology report, Breastcancer.org, 2016.

X. Li, M. Ni, C. Zhang, W. Ma, and Y. Zhang, A convenient system for highly specific and sensitive detection of miRNA expression, RNA, vol.20, issue.2, pp.252-261, 2014.

Y. Chen, J. A. Gelfond, L. M. Mcmanus, and P. K. Shireman, Reproducibility of quantitative rt-pcr array in miRNA expression profiling and comparison with microarray analysis, BMC Genomics, vol.10, issue.1, p.407, 2009.

W. Li and K. Ruan, MicroRNA detection by microarray, Anal Bioanal Chem, vol.394, issue.4, pp.1117-1141, 2009.

E. Larrea, C. Sole, L. Manterola, I. Goicoechea, M. Armesto et al., New concepts in cancer biomarkers: circulating miRNAs in liquid biopsies, Int J Mol Sci, vol.17, issue.5, p.627, 2016.

G. Cheng, Circulating miRNAs: roles in cancer diagnosis, prognosis and therapy, Adv Drug Deliv Rev, vol.81, pp.75-93, 2015.

J. Wang, K. Zhang, S. Liu, and S. Sen, Tumor-associated circulating microRNAs as biomarkers of cancer, Molecules, vol.19, issue.2, pp.1912-1950, 2014.

C. Margue, S. Reinsbach, D. Philippidou, N. Beaume, C. Walters et al., Comparison of a healthy mirnome with melanoma patient mirnomes: are microRNAs suitable serum biomarkers for cancer?, Oncotarget, vol.6, issue.14, p.12110, 2015.

Y. Koga, M. Yasunaga, A. Takahashi, J. Kuroda, Y. Moriya et al., MicroRNA expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening, Cancer Prev Res, vol.3, issue.11, pp.1435-1477, 2010.

M. Giulietti, G. Occhipinti, G. Principato, and F. Piva, Identification of candidate miRNA biomarkers for pancreatic ductal adenocarcinoma by weighted gene co-expression network analysis, Cell Oncol, vol.40, issue.2, pp.181-92, 2017.

L. Mengual, J. J. Lozano, M. Ingelmo-torres, C. Gazquez, M. J. Ribal et al., Using microRNA profiling in urine samples to develop a non-invasive test for bladder cancer, Int J Cancer, vol.133, issue.11, pp.2631-2672, 2013.

Y. Tan, G. Ge, T. Pan, D. Wen, L. Chen et al., A serum microRNA panel as potential biomarkers for hepatocellular carcinoma related with hepatitis b virus, PloS ONE, vol.9, issue.9, p.107986, 2014.

I. Summerer, K. Unger, H. Braselmann, L. Schuettrumpf, C. Maihoefer et al., Circulating microRNAs as prognostic therapy biomarkers in head and neck cancer patients, Br J Cancer, vol.113, issue.1, p.76, 2015.

M. D. Giráldez, J. J. Lozano, G. Ramírez, E. Hijona, L. Bujanda et al., Circulating microRNAs as biomarkers of colorectal cancer: results from a genome-wide profiling and validation study, Clin Gastroenterol Hepatol, vol.11, issue.6, pp.681-689, 2013.

N. Matamala, M. T. Vargas, R. González-cámpora, R. Miñambres, J. I. Arias et al., Tumor microRNA expression profiling identifies circulating microRNAs for early breast cancer detection, Clin Chem, vol.61, issue.8, pp.1098-106, 2015.

V. Medina-villaamil, S. Martínez-breijo, P. Portela-pereira, M. Quindós-varela, I. Santamarina-cainzos et al., Circulating microRNAs in blood of patients with prostate cancer, Actas Urol Esp (Engl Ed), vol.38, issue.10, pp.633-642, 2014.

X. Zheng, C. Cui, H. Ruan, W. Xue, S. Zhang et al., Plasma microRNA profiling in nasopharyngeal carcinoma patients reveals mir-548q and mir-483-5p as potential biomarkers, Chin J Cancer, vol.33, issue.7, p.330, 2014.

A. Scheffer, S. Holdenrieder, G. Kristiansen, A. Von-ruecker, S. C. Müller et al., Circulating microRNAs in serum: novel biomarkers for patients with bladder cancer?, World J Urol, vol.32, issue.2, pp.353-361, 2014.

N. Tsuchiya, H. Ogata, T. Okusaka, and H. Nakagama, Method for detecting pancreatic cancer and detection kit. Google Patents. US Patent APP. 14/410,408, 2015.

Y. Jiang, Y. Luan, H. Chang, and G. Chen, The diagnostic and prognostic value of plasma microRNA-125b-5p in patients with multiple myeloma, Oncol Lett, vol.16, issue.3, pp.4001-4008, 2018.

J. Wang, M. Raimondo, S. Guha, J. Chen, L. Diao et al., Circulating microRNAs in pancreatic juice as candidate biomarkers of pancreatic cancer, J Cancer, vol.5, issue.8, p.696, 2014.

R. Montalbo, L. Izquierdo, M. Ingelmo-torres, J. J. Lozano, D. Capitán et al., Prognostic value of circulating microRNAs in upper tract urinary carcinoma, Oncotarget, vol.9, issue.24, p.16691, 2018.

V. Y. Shin, E. K. Ng, V. W. Chan, A. Kwong, and K. Chu, A three-miRNA signature as promising non-invasive diagnostic marker for gastric cancer, Mol Cancer, vol.14, issue.1, p.202, 2015.

H. Wang, R. Peng, J. Wang, Z. Qin, and L. Xue, Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage, Clin Epigenetics, vol.10, issue.1, p.59, 2018.

C. Hsu, P. Lin, Y. Wang, Z. Chen, S. Lin et al., Circulating miRNA is a novel marker for head and neck squamous cell carcinoma, Tumor Biol, vol.33, issue.6, pp.1933-1975, 2012.

X. Jiang, L. Du, W. Duan, R. Wang, K. Yan et al., Serum microRNA expression signatures as novel noninvasive biomarkers for prediction and prognosis of muscle-invasive bladder cancer, Oncotarget, vol.7, issue.24, p.36733, 2016.

V. Tribollet, B. Barenton, A. Kroiss, S. Vincent, L. Zhang et al., mir-135a inhibits the invasion of cancer cells via suppression of err alpha, PloS ONE, vol.11, issue.5, p.156445, 2016.

Y. Zhao, Z. Ling, Y. Hao, X. Pang, X. Han et al., Mir-124 acts as a tumor suppressor by inhibiting the expression of sphingosine kinase 1 and its downstream signaling in head and neck squamous cell carcinoma, Oncotarget, vol.8, issue.15, p.25005, 2017.

Q. Q. Cai, Y. W. Dong, R. Wang, B. Qi, J. X. Guo et al., Mir-124 inhibits the migration and invasion of human hepatocellular carcinoma cells by suppressing integrin ?v expression, Sci Rep, vol.7, p.40733, 2017.

Y. Wang, L. Chen, Z. Wu, M. Wang, J. F. Wang et al., mir-124-3p functions as a tumor suppressor in breast cancer by targeting cbl, BMC Cancer, vol.16, issue.1, p.826, 2016.

T. Pan, W. Chen, X. Yuan, J. Shen, C. Qin et al., mir-944 inhibits metastasis of gastric cancer by preventing the epithelial-mesenchymal transition via macc1/met/akt signaling, FEBS Open Bio, vol.7, issue.7, pp.905-919, 2017.

L. Wen, Y. Li, Z. Jiang, Y. Zhang, B. Yang et al., mir-944 inhibits cell migration and invasion by targeting macc1 in colorectal cancer, Oncol Rep, vol.37, issue.6, pp.3415-3437, 2017.

Z. He, H. Xu, Y. Meng, and Y. Kuang, mir-944 acts as a prognostic marker and promotes the tumor progression in endometrial cancer, Biomed Pharmacother, vol.88, pp.902-912, 2017.

A. Dhawan, A. Barberis, W. Cheng, D. E. West, C. Maughan et al., sigQC: A procedural approach for standardising the evaluation of gene signatures

C. Catalanotto, C. Cogoni, and G. Zardo, MicroRNA in control of gene expression: an overview of nuclear functions, Int J Mol Sci, vol.17, issue.10, p.1712, 2016.

M. Muniyappa, P. Dowling, M. Henry, P. Meleady, P. Doolan et al., MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines, Eur J Cancer, vol.45, issue.17, pp.3104-3122, 2009.

M. Lamberti, R. Capasso, A. Lombardi, D. Domenico, M. Fiorelli et al., Two different serum miRNA signatures correlate with the clinical outcome and histological subtype in pleural malignant mesothelioma patients, PloS ONE, vol.10, issue.8, p.135331, 2015.

S. Y. Sathipati and S. Ho, Identifying the miRNA signature associated with survival time in patients with lung adenocarcinoma using miRNA expression profiles, Sci Rep, vol.7, issue.1, p.7507, 2017.

Y. Saeys, T. Abeel, and Y. Van-de-peer, Robust feature selection using ensemble feature selection techniques, Joint European Conference on Machine Learning and Knowledge Discovery in Databases, vol.5212, pp.313-338, 2008.

A. L. Rincon, A. Tonda, M. Elati, O. Schwander, B. Piwowarski et al., Evolutionary optimization of convolutional neural networks for cancer miRNA biomarkers classification, Appl Soft Comput, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01700622

L. Breiman, Pasting small votes for classification in large databases and on-line, Mach Learn, vol.36, issue.1-2, pp.85-103, 1999.

J. H. Friedman, Greedy function approximation: a gradient boosting machine, Ann Stat, vol.29, issue.5, pp.1189-232, 2001.

D. R. Cox, The regression analysis of binary sequences, J R Stat Soc Ser B Methodol, vol.20, issue.2, pp.215-247, 1958.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-shwartz, and Y. Singer, Online passive-aggressive algorithms, J Mach Learn Res, vol.7, pp.551-85, 2006.

L. Breiman, Random forests, Mach Learn, vol.45, issue.1, pp.5-32, 2001.

A. N. Tikhonov, On the stability of inverse problems, Cr Acad Sci Urss, vol.39, pp.195-203, 1943.

T. Zhang, Solving large scale linear prediction problems using stochastic gradient descent algorithms, Proceedings of the Twenty-first International Conference on Machine Learning, p.116, 2004.

M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf, Support vector machines, IEEE Intell Syst Appl, vol.13, issue.4, pp.18-28, 1998.

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and Regression Trees, p.368, 1984.

D. Leshkowitz, S. Horn-saban, Y. Parmet, and E. Feldmesser, Differences in microRNA detection levels are technology and sequence dependent, RNA, vol.19, issue.4, pp.527-565, 2013.

D. Vescovo, V. Meier, T. Inga, A. Denti, M. A. Borlak et al., A cross-platform comparison of affymetrix and agilent microarrays reveals discordant miRNA expression in lung tumors of c-raf transgenic mice, PloS ONE, vol.8, issue.11, p.78870, 2013.

N. Bassani, F. Ambrogi, and E. Biganzoli, Assessing agreement between miRNA microarray platforms, Microarrays, vol.3, issue.4, pp.302-323, 2014.

A. Chu, G. Robertson, D. Brooks, A. J. Mungall, I. Birol et al., Large-scale profiling of microRNAs for the cancer genome atlas, Nucleic Acids Res, vol.44, issue.1, p.3, 2015.

R. A. Irizarry, B. Hobbs, C. F. Beazer-barclay, Y. D. Antonellis, K. J. Scherf et al., Exploration, normalization, and summaries of high density oligonucleotide array probe level data, Biostatistics, vol.4, issue.2, pp.249-64, 2003.

C. Cheadle, M. P. Vawter, W. J. Freed, and K. G. Becker, Analysis of microarray data using z score transformation, J Mol Diagn, vol.5, issue.2, pp.73-81, 2003.

N. Hansen, S. D. Müller, and P. Koumoutsakos, Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es), Evol Comput, vol.11, issue.1, pp.1-18, 2003.

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations