A. Agastin, D. Sauvant, and M. Naves, Influence of trough versus pasture feeding on average daily gain and carcass characteristics in ruminants: A meta-analysis, Journal of Animal Science, vol.92, pp.1173-1183, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01173627

L. Bahloul, Modélisation mécaniste de l'émission splanchnique de nutriments énergétiques chez le ruminants, vol.335, 2014.

L. Bahloul, D. Sauvant, C. Loncke, M. Chartoire, J. Vernet et al., A novel approach combining meta-analysis with mechanistic modeling to predict hepatic nutrient fluxes in ruminants, Journal of Animal Science), 2019.

J. A. Berlin, Benefits of Heterogeneity in Meta-analysis of Data from Epidemiologic Studies, Am J Epidemiol, vol.142, issue.4, pp.384-387, 1995.

M. Borenstein, L. Hedges, and H. Rothstein, Meta-Analysis Fixed effect vs. random effects. www.Meta-Analysis.com, vol.159, 2007.

M. Borenstein, L. V. Hedges, J. Higgins, and R. Hr, Chapter 20 (17p), in "Introduction to Meta-Analysis, 2009.

M. Boval and D. Sauvant, Ingestive behaviour of grazing ruminants: metaanalysis of the components of bite mass, Animal Feed Science and Technology, vol.251, pp.96-111, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02172496

M. Boval, E. N. Sauvant, and D. , A meta-analysis of nutrient intake, feed efficiency and performance in cattle grazing on tropical grasslands, Animal, vol.9, pp.973-982, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01173670

D. , A. S. Sauvant, D. Boval, and M. , Mixed grazing systems of sheep and cattle to improve liveweight gain: a quantitative review, Journal of Agricultural Science, vol.152, pp.655-666, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01136289

J. B. Daniel, N. C. Friggens, P. Chapoutot, H. Van-laar, and D. Sauvant, Milk yield and milk composition responses to change in predicted net energy and metabolizable protein: a meta-analysis, Animal, vol.10, pp.1975-1985, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01482830

J. B. Daniel, N. C. Friggens, H. Van-laar, and D. Sauvant, Milk protein yield response to change in predicted net energy and metabolizable protein supply: Influence of dry-matter intake response, Annual Meeting of the European Association for Animal Production (EAAP), 2017.

C. Dragomir, D. Sauvant, J. L. Peyraud, S. Giger-reverdin, and B. Michalet-doreau, Meta-Analysis of 0-8 hours post-prandial kinetics of ruminal pH, Animal, vol.2, pp.1437-1485, 2008.

M. Eugene, A. , H. Sauvant, and D. , Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants, Livestock Production Science, vol.85, pp.81-97, 2004.

P. Faverdin, D. Sauvant, L. Delaby, S. Lemosquet, J. B. Daniel et al., Dry matter intake and milk yield responses to dietary changes. Chap 9, INRA Feeding System for Ruminants, pp.149-176, 2018.

G. V. Glass, Primary, secondary and meta-analysis of research, Education Research, vol.5, pp.3-8, 1976.

L. A. Gonzalez, I. Kyriazakis, and T. Lo, Review: Precision nutrition of ruminants: approaches, challenges and potential gains, Animal, vol.12, pp.246-261, 2018.

S. Greenland, Quantitative methods in the review of epidemiologic literature, Epid. Rev, vol.9, pp.1-30, 1987.

J. P. Higgins, S. G. Thompson, J. J. Deeks, and D. G. Altman, Measuring inconsistency in meta-analyses, Brit.Med.J, vol.327, pp.557-60, 2003.

H. Hillebrand, Meta-analysis of grazer control of periphyton biomass across aquatic ecosystems, J. of Phycology, vol.45, issue.4, pp.798-806, 2009.

, INRA Feeding System for Ruminants, INRA, p.643, 2018.

M. P. Letourneau-montminy, C. O. Lambert, and W. , Effect of low protein diets on nitrogen utilization, daily water consumption, and litter quality in broilers through meta-analysis approach. PSA meeting symposium-Aminoacids and low protein diets: Benefits for performance, meat quality, environment, health and welfare of poultry birds, Poultry Science, vol.97, issue.1, 2018.

M. P. Letourneau-montminy, C. Jondreville, D. Sauvant, and A. Narcy, Metaanalysis of phosphorus utilization by growing pigs: effect of dietary phosphorus, calcium and exogenous phytase, Animal, vol.6, pp.1590-1600, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01019048

M. P. Letourneau-montminy, A. Narcy, J. Y. Dourmad, T. Crenshaw, and C. Pomar, Modeling the metabolic fate of dietary phosphorus and calcium and the dynamics of body ash content in growing pigs, Journal of Animal Science, vol.93, pp.1200-1217, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01210963

M. P. Letourneau-montminy, A. Narcy, P. Lescoat, J. F. Bernier, M. Magnin et al., Meta-analysis of phosphorus utilisation by broilers receiving corn-soyabean meal diets: influence of dietary calcium and microbial phytase, Animal, vol.4, pp.1844-1853, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01173568

M. P. Letourneau-montminy, A. Narcy, P. Lescoat, J. F. Bernier, M. Magnin et al., Modeling the fate of dietary phosphorus in the digestive tract of growing pigs, Journal of Animal Science, vol.89, pp.3596-3611, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000188

R. C. Littell, P. R. Henry, and A. Cb, Statistical Analysis of Repeated Measures Data Using SAS Procedures, J. Anim. Sci, vol.76, pp.1216-1231, 1998.

R. C. Littell, G. A. Milliken, S. Ww, and W. R. , SAS, a System for Mixed Models, SAS Inst. Inc, pp.31-63, 1996.

C. Loncke, P. Nozière, L. Bahloul, J. Vernet, H. Lapierre et al., Empirical prediction of net splanchnic release of ketogenic nutrients, acetate, butyrate and ?-hydroxybutyrate in ruminants: A meta-analysis, Animal, vol.9, pp.449-463, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01173680

C. Loncke, I. Ortigues-marty, J. Vernet, H. Lapierre, D. Sauvant et al., Empirical prediction of net portal appearance of volatile fatty acids, glucose, and their secondary metabolites (?-hydroxybutyrate, lactate) from dietary characteristics in ruminants: a meta-analysis approach, Journal of Animal Science, vol.87, pp.253-268, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01173468

O. Martin and D. Sauvant, Meta-analysis of Input/Output Kinetics in Lactating Dairy Cows, Journal of Dairy Science, vol.85, pp.3363-3381, 2002.

A. Offner and D. Sauvant, Prediction of in vivo starch digestion in cattle from in situ data, Animal Feed Science and Technology, vol.111, pp.41-56, 2004.

K. Pearson, Report on certain enteric fever inoculation statistics, Brit.Med.J, vol.3, pp.1243-1246, 1904.

D. B. Petitti, Approaches to heterogeneity in meta-analysis, Statist. Med, vol.20, pp.3625-3633, 2001.

A. Philibert, L. C. Makowski, and D. , Assessment of the quality of metaanalysis in agronomy, Agri., Ecosyst. andEnv, vol.148, pp.72-82, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004278

C. Phillips, Meta-analysis-a systematic and quantitative review of animal experiments to maximise the information derived, Anim.Welfare, vol.14, pp.333-338, 2005.

N. Salah, D. Sauvant, and H. Archimede, Nutritional requirements of sheep, goats and cattle in warm climates: a meta-analysis, Animal, vol.8, pp.1439-1447, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01173654

N. Salah, D. Sauvant, and H. Archimede, Response of growing ruminants to diet in warm climates: a meta-analysis, Animal, vol.9, pp.822-830, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01152981

D. Sauvant, Modelling efficiency and robustness in ruminants, the nutritional point of view, Animal Frontiers, vol.9, pp.60-67, 2019.

D. Sauvant and O. Martin, Empirical modelling through meta-analysis vs mechanistic modelling, Nutrient digestion and utilization in farm animals: modelling approaches, 2004.

D. Sauvant and P. Nozière, Modèle intégratif du tube digestif intégrant les interactions digestives, les flux de nutriments d'intérêt et compatible avec les systèmes UF et PDI, Rencontres Recherches Ruminants, vol.19, pp.181-184, 2012.

D. Sauvant and P. Noziere, Quantification of the main digestive processes in ruminants: the equations involved in the renewed energy and protein feed evaluation systems, Animal, vol.10, pp.755-770, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01508138

D. Sauvant and W. Z. Yang, Meta-analysis of the additivity between two dietary fibres in dairy cows (french). Rencontres Recherche Ruminants, vol.18, p.125, 2011.

D. Sauvant, S. Giger-reverdin, A. Serment, and L. Broudiscou, Influences of diet and rumen fermentation on methane production by ruminants, Inra Productions Animales, vol.24, pp.433-446, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01561700

D. Sauvant, P. Nozière, and O. , Chapter 6. Energy expenditures, efficiencies and requirements, INRA Feeding System for Ruminants, pp.91-118, 2018.

D. Sauvant, P. Schmidely, J. Daudin, and N. R. St-pierre, Meta-analyses of experimental data in animal nutrition, Animal, vol.2, pp.1203-1214, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01173463

D. Srednicka-tober, M. Baranski, C. Seal, R. Sanderson, C. Benbrook et al., Composition differences between organic and conventional meat: a systematic literature review and meta-analysis, British Journal of Nutrition, vol.115, pp.994-1011, 2016.

N. R. St-pierre, Invited review: Integrating quantitative findings from multiple studies using mixed model methodology, Journal of Dairy Science, vol.84, pp.741-755, 2001.

A. J. Sutton and J. P. Higgins, Recent developments in meta-analysis, Statist.Med, vol.27, pp.625-650, 2008.

S. G. Thompson, Systematic review -why sources of heterogeneity in metaanalysisshould be investigated, British Medical Journal, vol.309, pp.1351-1355, 1994.

H. , A. Lr, and T. Stijnen, Advanced methods in metaanalysis: multivariate approach and meta-regression, Statistics in Medicine, vol.21, pp.589-624, 2002.

J. Vernet and O. , Conception and development of a bibliographic database of blood nutrient fluxes across organs and tissues in ruminants: data gathering and management prior to meta-analysis, Reproduction Nutrition Development, vol.46, pp.527-546, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00900635

F. Yates and W. G. Cochran, The analysis of groups of experiments, J.Agric.Sci, vol.28, pp.556-580, 1938.

J. Zhao, C. Sauvage, J. Zhao, F. Bitton, G. Bauchet et al., Meta-analysis of genome-wide association studies provides insights into genetic control of tomato flavor, Nature Communications, pp.1-12, 2019.

M. Zouaoui, W. Lambert, and M. P. Létourneau-montminy, Meta-analysis of the response of broilers to dietary valine: impact of other branched chain amino acids, PSA Annual Meeting, vol.98, 2019.