Growth and the environment: taking into account structural transformation
Julien Wolfersberger

To cite this version:
Julien Wolfersberger. Growth and the environment: taking into account structural transformation. 2019. hal-02156298v2

HAL Id: hal-02156298
https://hal-agroparistech.archives-ouvertes.fr/hal-02156298v2
Submitted on 17 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Growth and the Environment: Taking into Account Structural Transformation

Julien Wolfersberger
AgroParisTech, INRA UMR Économie Publique, Université Paris-Saclay, France

Abstract

This paper analyzes how structural transformation (as defined by the reallocation of economic activity across sectors) can explain the differences in pollution emissions across countries. Since pollution per unit of output differs across sectors, environmental quality can vary as a result of the rise of services at the expense of industry and in absence of environmental policy: this is the composition effect. An amended model of structural transformation is developed, where pollution is a by-product of output, and the predictions of the model are then tested empirically by studying labor reallocation and carbon emissions in 120 countries over the 1992-2014 period. The results show that composition is crucial to understand the differences in CO₂ emissions across countries, and that the determinants vary according to countries’ stages of structural transformation. We also find that the importance of convergence, traditionally the main factor to explain the dynamic effect of economic growth on the environment, is lowered by more than 30% when structural transformation is taken into account.

Keywords: Structural transformation; Environment; Growth

JEL codes: O41 ; O44 ; Q50

*I thank Jean-Marc Bourgeon, Brian Copeland, Douglas Gollin, Estelle Gozlan and Clément Nedoncelle for helpful comments and discussions.
1 Introduction

The goal of this paper is to analyze the impact of structural transformation on the environment, and more precisely to understand to what extent it can explain the differences in CO\textsubscript{2} emissions across countries. To do this, we analyze both theoretically and empirically the impact of a change in the sources of growth, implied by structural transformation, on pollution dynamics across countries. While most studies at the same scale relied on a one sector-growth model (e.g., Solow, Ramsey), this work brings new results by adopting a multi-sectoral approach on a wider range of countries.

Throughout the paper, we define the environmental impact of the change in the sources of growth implied by structural transformation as the \textit{composition effect}. At an early stage of development, the composition of output is mainly agricultural. Then, as the share of industry in total output increases, emissions rise since this sector is more polluting than agriculture. As development goes on, depending on preferences and sectoral productivity growth rates, services represent a larger and larger share of total output. Since pollution is on average lower in services than industry, emission intensity decreases as long as national product remains constant or growing. Hence, the rise of industry, followed by the rise of services, can cause the inverted-U shape of the well-known \textit{Environmental Kuznets Curve} (EKC) observed between environmental quality and GDP per capita in some countries. Overall, this makes structural transformation a great candidate to explain the link between economic growth and the environment.

To guide empirical work, we develop a simple theoretical background. First, we show how to decompose aggregate emissions between scale, composition, and technique effects. The interest of this paper is to explain and identify the composition effect, generated by a decrease in the share of industry in total output. Second, we develop a two-sector model of structural transformation and highlight how the contraction of industry can reduce emissions.

In the empirical analysis, we use panel data on the growth rate of CO\textsubscript{2} emissions in 120 countries over 1992-2014. To introduce the analysis, summary statistics are provided and show the level of pollution in different groups of countries according to their level of industrialization. The role of public policy to reduce pollution is also discussed. In the causal part of the analysis, we find that the contraction of the industrial sector significantly
decreases the growth rate of \(\text{CO}_2 \) emissions per capita. The variation in the size of the industrial sector is measured by the growth rate of industrial employment, and the results are robust to several specifications including when changing the indicator by the variation in sectoral value-added (as a share of total GDP). Then, considering countries subgroups, we find that for those at a late stage of structural transformation (i.e., those with the lowest share of agricultural employment) this is rather the rise of services which drives down emissions.

Eventually, we also identify a negative relationship between the level of output and the subsequent growth rate of \(\text{CO}_2 \) emissions, called the convergence effect, as in Brock and Taylor (2010) or Criado et al. (2011). Notably, we find that the importance of convergence is lowered by more than 30% when structural transformation is taken into account. This suggests that previous studies may have overestimated the importance of this effect since an important property of growth was omitted, namely structural transformation.

This paper is related to different strands of literature. Numerous articles attempted to explain the variation of pollution growth rates across countries since the pioneer works of Grossman and Krueger (1991, 1995) on the EKC.\(^1\) Only some of them base their empirical analysis on a theoretical model of growth, as we do here. Brock and Taylor (2010) develop the green Solow model where the EKC results from the combination of convergence in the GDP growth rate and technological progress in abatement. The authors also provide a method to estimate the determinants of the growth rate in carbon emissions using data over the 1960-1998 period. Criado et al. (2011) develop a similar analysis but use a Ramsey-growth model, and focus on sulfur and nitrogen oxides. As do Brock and Taylor (2010), they find evidence of a convergence effect: a negative relationship between the initial level of emissions and subsequent pollution dynamics. The author also highlights a scale effect, where an increase in the size of the economy leads to more emissions.

The one-sector growth-model used in these articles cannot, however, take into account a composition effect induced by structural transformation since it does not allow for changes in the mix of economic activity. Yet, the literature both in economic growth and environmental economics suggests that this effect can play a critical role. On one hand, Herrendorf et al. (2014) provide recent evidence that structural transformation is an important feature of modern growth in developed and developing countries. On the other hand, Copeland and

\(^1\)For discussions and reviews see among others: Copeland and Taylor (2004); Stern (2004); Carson (2010).
Taylor (2004) show that a change in the sources of growth, and thus a change in the composition of total output, could be a channel to explain the EKC. On this point, Stefanski (2013) presents a pollution accounting exercise and finds that sectoral change represents a larger share of falling emissions than GDP convergence, confirming the presence of a composition effect. He argues that structural change generates a peak in emission intensity that could explain the EKC. Chen (2017) also finds that the growth rate of emission intensity in 21 European countries decreased over 1950-2010, confirming Stefanski’s results and contradicting Brock and Taylor (2010) who assume that this rate is constant. The main conclusion of these studies is that the convergence forces alone cannot explain the variation in CO₂ emissions across countries.

Another strand of the literature performed decomposition analysis of pollution. Among these works, Levinson (2009) and Shapiro and Walker (2018) focus on US manufacturing and highlight the importance of the technique effect. Brunel (2017) reaches similar conclusions by focusing on the manufacturing sector in the US but including EU countries too. On composition, Selden et al. (1999) find that this effect was significant but not strong enough to explain by itself the EKC. Bruvoll and Medin (2003) also find the presence of a significant composition effect when studying Norway, while noticing that it has been counterbalanced by the rise of the demand in the energy sector. Marsiglio et al. (2016) study European economies over 1995-2009, and confirm that structural transformation was an important feature of the change in CO₂ emissions.

Therefore, to better understand why some countries pollute more than others and how modern growth affects the environment, it is important to examine the effect of structural transformation. This is the goal of this article, which also connects with the renew of interest in the macroeconomic literature for the question of structural transformation. For instance, Święcki (2017) revisits the determinants of structural transformation, while Stefanski (2014) estimates the impact of the process on oil price in non-OECD countries. Our paper contributes to the literature by explicitly analyzing the impact of structural transformation on a global pollutant like CO₂ emissions. This is done here on the basis of a theoretical analysis and using cross-country data that also include, contrary to previous analyzes, developing countries over a time-span of more than 20 years.
The remainder of the article is organized as follows. To motivate the analysis, some stylized-facts are presented in section 2. Section 3 introduces the general framework to model the change in aggregate emissions, and section 4 presents the amended model of structural transformation with pollution. It shows how resources move across sectors and how it impacts aggregate emissions. Section 5 is dedicated to the empirical analysis of the predictions from the model, and includes a robustness-analysis. Section 6 concludes.

2 Motivating facts

This section is organized around three main points. It aims at presenting first how emissions per unit of GDP have changed in developed countries over the last decades. Then some data on the differences in emission intensity across sectors are presented, and the role of abatement is discussed in a third point.

2.1 Trends in emission intensity

Let us start with a description of the link between pollution and income in some advanced economies over the last decades. Figure 1 shows the amount of CO$_2$ emissions per unit of GDP in Europe and the United-States since 1960.

![Figure 1: Change in emission intensity over 1960-2015; Source: World Development Indicators.](image)

The pattern of pollution per unit of GDP is similar: it follows an inverted-U shape as described by the classic EKC framework. Note that even if for USA the variance is lower, the curve is still observed. This shows that the rate of change in emission intensity has been
decreasing at the aggregate level, both in the EU and USA since 1960. Figure 2 plots this growth rate in both regions.

Figure 2: Growth rate of emission intensity since 1960 in EU and USA;
Source: World Development Indicators.

The rate of decline is more pronounced in the EU, while it is around -0.02% per year for the United-States since 1960. Stefanski (2013) finds that this negative change in emission intensity is larger than GDP convergence in most countries. Chen (2017) finds the same result when focusing on European countries only.

It suggests that to understand the effect of growth on the environment we cannot rely solely on the convergence explanation provided by models like the Green Solow one. We also need to understand the decrease in emission intensity.

2.2 Sectoral emission intensity

Now we present data we have collected on emissions per sector. Our objective is to see whether industry is the sector with the highest level of pollution per unit of output. For this purpose, we use the OECD database which provide air emission accounts per sector for 26 countries between 2011 and 2016. In Appendix A, we provide a complete detail of the aggregation of the data per sector and the countries of the sample. Figure 3 shows the average emission intensity for each sector in time.

The amount of CO$_2$ emissions per unit of GDP is two to three times higher in industry than in services. Interestingly, it has not varied importantly in the three main sectors over this six years period. The time-series are quite flat for agriculture and services, while slightly decreasing for the industrial sector.
Figure 3: Average emission intensity per sector in 26 OECD countries over 2011-2017; Source: OECD.

Table 1 presents summary statistics for selected economic and pollution variables for the 120 countries of the sample in 2014. Countries are divided between three groups according to their level of industrialization.

Table 1: Summary statistics per level of industrialization (average-values for year 2014), Sources: ILOSTAT database, World Development Indicators.

<table>
<thead>
<tr>
<th>Share of employment in the industrial sector</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment in industry (% of total)</td>
<td>10.32</td>
<td>19.42</td>
<td>28.87</td>
</tr>
<tr>
<td>Employment in services (% of total)</td>
<td>35.42</td>
<td>62.56</td>
<td>52.30</td>
</tr>
<tr>
<td>GDP per capita (constant 2010 US$)</td>
<td>4155.62</td>
<td>23240.73</td>
<td>12000.31</td>
</tr>
<tr>
<td>CO₂ emissions per capita (metric tons)</td>
<td>1.16</td>
<td>4.91</td>
<td>5.44</td>
</tr>
<tr>
<td>CO₂ emission per unit of GDP (kt)</td>
<td>0.35</td>
<td>0.43</td>
<td>0.68</td>
</tr>
<tr>
<td>GDP per unit of energy use(*)</td>
<td>9.04</td>
<td>10.91</td>
<td>9.27</td>
</tr>
<tr>
<td>Observations</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

Notes: values reported are the means per group at year 2014.
(*) The variable of GDP per unit of energy use counts 19, 3 and 3 missing observations for the low, medium and high groups, respectively.
In 2014 the group of countries with the highest level of industry had, on average, 29% of total employment located in this sector, while it was around 10% for the lowest group. While industry does not capture the largest share of labor force in an economy on average, it is correlated with higher pollution levels. In the three groups of countries from the sample, the larger is the share of industrial employment, the larger are the CO₂ emissions both per capita and per unit of output. For example, the 40 countries with the highest level of industry emitted 0.68 kilotons of CO₂ per unit of GDP, while the 40 countries with a middle-level of industry, which had 19.42% of total employment allocated in this sector, emitted 0.43 kilotons of CO₂ per unit of GDP. This suggests the existence of a link between the composition of the economy and its level of emissions.

Furthermore, the group of countries with the highest level of GDP per capita is not the one with the largest share of workers in the industrial sector. The richest group is the one with the medium level of employment in industry, and the largest employment in services. This corresponds to stylized facts about structural transformation, also documented by Herrendorf et al. (2014). At some threshold of development, the industrial sector eventually shrinks and the services sector continues to expand as GDP per capita increases.

The variable of GDP per unit of energy use is the ratio of GDP per kilogram of oil equivalent of energy use. This can be viewed as an index of technology in the energy sector. Not surprisingly, this is the group of countries with the highest level of GDP per capita and the largest services sector that is the most energy-efficient, according to this indicator. Interestingly, the group of countries with the largest industrial sector has a technology with a comparable level to that of the group with the lowest level of GDP per capita. They both obtained 9 dollars per kilogram of oil equivalent from energy use in 2014.

2.3 The role of abatement

Since abatement may play an important role to understand the decreasing trend in emission intensity, Figure 4 shows expenditures in environmental protection in the manufacturing sector of OECD countries with data available.

Expenditures in environmental protection represent a very low share of total GDP, that is, less than 1%. Furthermore, the ratio did not significantly vary over time in most countries
of the Figure.2 This suggests that without underestimating the role of abatement, there must be space for other forces to explain Figure 1, such as structural transformation. This is also supported by the other stylized facts presented in this section.

3 Background: modeling aggregate emissions

Following a large literature in environmental economics3, it is possible to represent aggregate emissions E as:

\begin{equation}
E = \sum_i e_i = \sum_i y_i \Omega_i = Y \sum_i \phi_i \Omega_i,
\end{equation}

2In Appendix B we show that expenditures in the public sector follow the same pattern.

3For a review of works on growth and the environment since the seminal work of Grossman and Krueger (1991, 1995), see among others Copeland and Taylor (2004).
where \(e_i \) represents the amount of pollution generated by production in sector \(i \). The variable \(\Omega_i \equiv e_i/y_i \) represents emission intensity per sector, and \(\phi_i \equiv y_i/Y \) is the share of production \(i \) in total output \(Y \). It represents the composition of the economy.

In vectorial notation, by totally differentiating (1) and dividing by \(E \), one obtains the well known scale, composition, and technique effects:

\[
\frac{dE}{E} = \frac{dY}{Y} + \frac{d\phi}{\phi} + \frac{d\Omega}{\Omega}.
\] (2)

All other parameters held constant, when total output \(Y \) increases, the growth rate of emissions \(E \) in the economy rises. This is the scale effect. The composition effect is provided by the second term on the RHS of (2), which represents the variation in the share of each sector’s production over total output. *Ceteris paribus*, assuming that the manufacturing sector pollutes more than agriculture and services (as shown in Figure 3), aggregate emissions will increase in an economy whose production intensifies in manufacturing. Hence, when structural transformation occurs and services rise at the expense of manufacturing as a share of total output, then \(d\phi/\phi < 0 \) and the growth rate of emissions decreases. The last term on the RHS of (2) is the technique effect. It encompasses changes in technology and regulation, and is negative when these changes are in favor of environmental protection.

To further illustrate very simply the composition effect occurring through structural transformation, suppose two countries A and B with similar sizes (or equivalent scale). Data reveal that A emits more than B, so that \(E^A > E^B \), which implies:

\[
Y^A \sum_i \phi^A_i \Omega^A_i > Y^B \sum_i \phi^B_i \Omega^B_i.
\] (3)

Further, suppose that country A and B share similar technologies and that the level of technology in abatement is the same across sectors, so that \(\sum_i \Omega^A_i = \sum_i \Omega^B_i = \Omega \). Since \(Y^A = Y^B \), the only remaining explanation of why aggregate emissions are higher in country A is that country B’s mix of activity is less harmful for the environment, that is \(\sum_i \phi^A_i > \sum_i \phi^B_i \). This provides a simple example of how compositional effects induced by structural transformation can explain why some countries pollute more than others.
Using a one-sector growth model, Brock and Taylor (2010) represent emissions as:

\[E = \Omega Y(1 - \theta), \]

where \(\theta \) is the fixed share of output \(Y \) reallocated to abatement. The variable \(\Omega \) represents every unit of pollution generated as a joint product of economy activity, it is assumed to be constantly decreasing and represents the technique effect. Equation (4) from Brock and Taylor (2010) model ignores the potential effect of a variation in composition, given by \(\phi \) in equation (2). Though, as discussed in the introduction, several papers performing decomposition analysis provide empirical evidence of the importance of composition and structural transformation to understand the path of emissions (e.g., Selden et al., 1999; Bruvoll and Medin, 2003; Stefanski, 2013; Marsiglio et al., 2016; Chen, 2017). It follows that the green solow model potentially misses an important part of why and how emissions vary along with growth.

Pollution may vary depending on the pattern of structural transformation. Suppose that two countries with the same amount of aggregate production and pollution observe a similar increase in output \(Y \). In the first country, this increase is largely due to manufacturing, while in the second one, it is due to services. All other parameters held constant, the first country will now pollute more. This simple insight cannot be explained using equation (4) derived from a one-sector growth model. Instead, using a multi-sector growth model makes it possible to show how the pattern of structural transformation may explain differences in aggregate pollution.

4 A model of structural transformation with pollution

The model developed here has roots in the general framework of relative prices from Ngai and Pissarides (2007). The goal of this simple model is to present an explanation of the rise of services at the expense of industry, and to assess its impact on pollution.
4.1 Environment

Suppose an infinite-lived agent whose lifetime utility is given by:

\[U_t \equiv \int_0^\infty e^{-\rho t} \log(C_t)dt, \]
(5)

with \(\rho \) the discount rate, and \(C_t \) the yearly amount of consumption, which is a composite of manufacturing \((c_{mt}) \) and services \((c_{st}) \) consumption:

\[C_t = \left(\frac{\sigma^{-1}}{c_{mt}} + \frac{\sigma^{-1}}{c_{st}} \right)^{\frac{1}{1-\sigma}}. \]
(6)

The parameter \(\sigma \) determines the elasticity of substitution between goods. When \(\sigma \) is lower than 1 and tend towards 0, the manufacturing and services goods are complements in consumer’s utility, including when income increases. To keep the model as simple as possible and without loss of generality, we abstract from agriculture in this version.

It is noticeable that the model does not display preferences from agents for the environment. This allows us to show how structural transformation can generate decreasing emissions even in absence of environmental policy.

Production in this economy is based only on labor:

\[Y_t = \sum_i y_{it} = \sum_i A_{it}n_{it}, \quad i \in \{m,s\}, \]
(7)

with \(n_{it} \) is the amount of workers in sector \(i \) at each time-period \(t \). The variable \(y_{it} \) refers to the level of output in sector \(i \). \(A_{it} \) is the productivity parameter in sector \(i \), it is assumed to grow exogenously at a given rate following:

\[\frac{\dot{A}_{it}}{A_{it}} = \gamma_i, \quad i \in \{m,s\}, \]
(8)

with \(\gamma_i > 0 \).

Since the accumulation process is not detailed in the standard version of the model, in each sector \(i \) we have \(y_{it} = c_{it} \). Labor is freely mobile across sectors and the feasibility
constraint imposes:

\[n_{mt} + n_{st} = N, \]

where total labor \(N \) is normalized to one. As detailed before, aggregate emissions \(E_t \) are:

\[E_t = Y_t \sum_i \phi_{it} \Omega_{it}, \]

with \(\sum_i \Omega_{it} = \Omega_t = \frac{1}{B_t} \) an abatement ratio. It captures innovations in environmental technology or changes in regulation that lower emission intensity in the economy (i.e. the technique effect). Similar to Brock and Taylor (2010), we assume that \(B_t \) grows uniformly across sectors at a positive and exogenous rate \(g^B \), such that \(\frac{\dot{B}_t}{B_t} = g^B \). This assumption allows us to focus on the core of this paper: the role played by structural transformation. While \(Y_t \) represents total output, the variable \(\phi_{it} = \frac{y_{it}}{Y_t} \) represents sectoral share \(i \) in the mix of production.

4.2 Defining sustainable growth

Let us define sustainable growth as a situation where total output \(Y \) grows at a positive rate \(g_Y > 0 \), while the growth rate of emissions is negative \(g_E < 0 \). Using (2), rewriting \(dx/x \) for a given variable \(x \) as \(g_x \), the condition \(g_E < 0 \) imposes:

\[g_Y + g_\phi + g_\Omega < 0, \]

where \(g_\phi \) represents the change in the composition of the economy, and \(g_\Omega \) is the change in emission intensity. To understand the different effects, in accordance with the data presented in Figure 3, we introduce two important definitions:

Definition 1. Emission intensities vary across the two sectors manufacturing and services. The manufacturing sector has the highest level of emissions per unit of output: \(\Omega_m > \Omega_s \).

Next we can pose:

Definition 2. A change in the composition of the mix of activities towards more industry implies \(g_\phi > 0 \), that is, more industry increases aggregate emissions as represented by equa-
tion (2). On the contrary, a decrease in the share of industry lowers emissions’ growth rate, and implies $g_\phi < 0$.

Given that emission intensity decreases at an exogenous rate g^B, a sustainable growth path must be:

$$g_Y < g^B - g_\phi,$$

with $g_Y > 0$ and $g^B > 0$. If structural transformation is characterized by the rise of services at the expense of manufacturing then we have $g_\phi < 0$. Sustainable growth in the economy is then defined by an increasing output, whose growth rate must be lower than the sum of progress in abatement (g^B) and composition changes (g_ϕ). Put it simply, in an economy where the growth rate of output g_Y is positive and exactly equal to the growth rate of the abatement ratio g^B, then sustainable growth is reached as long as services increase at the expense of industry (i.e. $g_\phi < 0$). It is now possible to examine the equilibrium properties of the model.

4.3 Structural transformation and emission path

Solving consumers' problem yields the price-ratio of manufacturing to services good:

$$\frac{p_{mt}}{p_{st}} = \left(\frac{c_{st}}{c_{mt}} \right)^{\frac{1}{\sigma}},$$

(13)

with p_{mt} and p_{st} the prices of the manufacturing and the services good, respectively. Solving firms’ problem yields another expression of the ratio (13):

$$\frac{p_{mt}}{p_{st}} = \frac{A_{st}}{A_{mt}}.$$

(14)

On the production side, the price ratio is simply the inverse ratio of sectoral productivities. This defines the relative prices in the economy.
Provided that \(c_{it} = y_{it} \ \forall i \in \{m, s\} \), using (13) and (14), the optimal allocation of labor across sectors is:

\[
\frac{n_{st}}{n_{mt}} = \left(\frac{A_{mt}}{A_{st}} \right)^{(1-\sigma)}. \tag{15}
\]

The ratio of employment in each sector is determined by the ratio of relative productivity. The more productive is the manufacturing sector relative to services, the larger the share of labor force released towards services. Less labor is required to meet the demand for the good produced in this sector. Combining (15) with (8) yields:

Proposition 1. For any \(\sigma < 1 \), if \(\gamma_{mt} > \gamma_{st} \), then structural transformation takes place and it is characterized by the two following properties:

- Employment in industry \(n_{mt} \) decreases and employment in services \(n_{st} \) increases;
- The ratio of services to manufacturing output \(p_{st}y_{st}/p_{mt}y_{mt} \) increases.

Proof. From (15), taking the logs and differentiating with respect to time, the rate of change in services employment is:

\[
\frac{\dot{n}_{st}}{n_{st}} - \frac{\dot{n}_{mt}}{n_{mt}} = (1 - \sigma) \left(\gamma_{mt} - \gamma_{st} \right), \tag{16}
\]

Given that \(n_{st} = 1 - n_{mt} \), it follows that \(\sigma < 1 \) and \(\gamma_{mt} > \gamma_{st} \) ensure that the LHS of (16) is positive and labor force flows out from manufacturing towards services.

Next, using the properties from (13) and (14), the ratio of services to manufacturing production is:

\[
\frac{p_{st}y_{st}}{p_{mt}y_{mt}} = \left(\frac{A_{mt}}{A_{st}} \right)^{(1-\sigma)}, \tag{17}
\]

The LHS of (17) is increasing as long as \(A_{mt} \) grows faster than \(A_{st} \), which is satisfied by the conditions \((\gamma_{mt} - \gamma_{st}) > 0 \) and \(\sigma < 1 \). Since \(y_{mt} + y_{st} = Y_t \), the share of manufacturing in total output decreases and we obtain \(g_{\phi} < 0 \) according to Definition 2. \[\square\]
Proposition 1 shows how the economy experiences structural transformation at the expense of manufacturing and in favor of services. Let us now examine the impact of such transformation on aggregate emissions with the following proposition:

Proposition 2. When structural transformation as defined by Proposition 1 occurs, holding scale and technology constant, the growth rate of emissions decreases.

Proof. From equation (2), holding scale and technology fixed, the rate of change in emissions is only: \(\frac{dE}{E} = \frac{d\phi}{\phi} \). Making use of Definition 2, the decline of industry implies \(\frac{d\phi}{\phi} < 0 \), so the growth rate of aggregate emissions \(E_t \) decreases.

So far we have seen the conditions for structural transformation to take place, and then the consequences on the environment. The last element to examine is that output is growing along this equilibrium.

Using (7), the change in sectoral production is given by:

\[
\dot{y}_{it} = \gamma_i + \frac{\dot{n}_{it}}{n_{it}}, \quad i \in \{m, s\},
\]

with \(\gamma_i \) positive and constant. When productivity grows at the same rate in both sectors \(\gamma_{mt} = \gamma_{st} \), global output \(Y_t \) grows at a rate \(\sum_i \gamma_i > 0, \quad i \in \{m, s\} \). In this case, structural transformation does not occur and growth is sustainable only if the growth rate in abatement is larger than that of output, which is: \(g_B > \sum_i \gamma_i, \quad i \in \{m, s\} \).

When \(\gamma_{mt} > \gamma_{st} \), the growth rate of total output is:

\[
\dot{Y}_t = \sum_i \dot{y}_{it} = \sum_i \gamma_i + \frac{\dot{n}_{mt}}{n_{mt}} + \frac{\dot{n}_{st}}{n_{st}}.
\]

Given that \(n_{st} = 1 - n_{mt} \), we have \(\dot{n}_{mt}/n_{mt} < 0 \) as employment in industry decreases. This implies that \(Y_t \) is increasing as long as, in absolute terms, we have \(\gamma_{mt} + \gamma_{st} + \frac{\dot{n}_{st}}{n_{st}} > \frac{\dot{n}_{mt}}{n_{mt}} \). It is possible to deduce:

Proposition 3. The economy experiences sustainable growth together with structural transformation when the following inequality is satisfied:

\[
g_B - g_\phi > \sum_i \gamma_i + \frac{\dot{n}_{st}}{n_{st}} - \frac{\dot{n}_{mt}}{n_{mt}},
\]

\[16\]
where \(g_{\phi} < 0 \) and \(\frac{\dot{n}_{mt}}{n_{mt}} < 0 \).

Proof. In the text. \(\square \)

Along this path, the growth of output is driven both by sectoral productivity growth \(\gamma_i \) and by the reallocation of workers in services. The combination of (i) the reallocation of economic activity away from manufacturing \(g_{\phi} \) and (ii) the growth rate in abatement \(g^B \) ensure that emissions are decreasing.

Finally, notice that another way to obtain structural transformation in a similar model is to introduce non-homothetic preferences. In this case, transformation would emerge from consumers’ taste (demand-side). Since CO\(_2\) emissions come mainly from production, a choice was made here to focus on transformation driven by technology (supply-side).

4.4 Empirical predictions

We can deduce from equation (2) that the growth rate of CO\(_2\) emissions increases with the growth rate of (i) the size of the economy \(\frac{dY}{Y} \), (ii) the composition of the economy \(\frac{d\phi}{\phi} \), (iii) emission intensity \(\frac{d\Omega}{\Omega} \). When the share of industrial output decreases, from Definition 2 we have \(\frac{d\phi}{\phi} < 0 \). All things equal, it lowers the growth rate of emissions, as described by Proposition 2.

In the model, it is assumed that \(\Omega = \frac{1}{B} \), with \(\frac{\dot{B}}{B} = -g^B \). Following the literature in environmental economics, this technique effect lowering emissions per unit of output may occur notably through two forces: (i) technological progress in abatement or energy use, or (ii) increase in the level of environmental regulation. These two channels are studied in the empirical analysis.

5 Empirical analysis

5.1 Data and methodology

The model is applied to carbon dioxide emissions. The dependent variable is the annual growth rate of CO\(_2\) emissions per capita. Using CO\(_2\) emissions presents the advantage of having data on a pollutant available for a broad set of countries and over long time-periods,
which is not necessarily the case of other pollutants. It is provided by the World Development Indicators (WDI), whose source is the Carbon Dioxide Information Analysis Center (USA).

The variable accounting for structural transformation is the rate of variation in industrial employment (measured as a share of total employment), provided by the International Labour Organization (ILO). The industry sector precisely “consists of mining and quarrying, manufacturing, construction, and public utilities (electricity, gas, and water)”. Employment in services will be included too, and the sector encompasses “wholesale and retail trade and restaurants and hotels; transport, storage, and communications; financing, insurance, real estate, and business services; and community, social, and personal services”.

Data on sectoral employment are available over the 1991-2015 period. This relatively short time-period questions the choice of the source for the variable of industrial employment. For instance, Timmer et al. (2015) provide data on sectoral employment for some countries from 1950 onwards. However, those data are available for only 35 countries and not every year, while ILO data are available for practically every country. This is why ILO data were chosen. Taking all constraints into account, we obtain a panel of 120 countries over the 1992-2014 period. Figure 5 shows the variation in industrial employment over the period of study.

Figure 5: Industrialization and deindustrialization in the 120 countries of the sample.
Source: ILO.

4 Among the initial sample of 150 countries, there are only 9 missing values for sector employment, and it concerns only small states (e.g., Bermuda, Faroe Islands).
The sample makes it possible to account for a wide range of development stages, with countries with less than 5% of employment in industry, and others with more than 45%. It is interesting to notice that most of the sample seems to follow the classic structural transformation scheme. Indeed, countries with less than 20% of labor force in industry in 1992 have predominantly increased their share of employment in this sector until 2014. On the contrary, where the share of labor in industry was already above 20% in 1992, deindustrialization seems to have occurred as these countries have a lower level of industrial employment in 2014. In Appendix B.3 the same Figure is provided for the services sector to show the structural transformation pattern in the sample.

Econometric model

To transform the theoretical model presented in section 4 into a discrete-time model, it is possible to approximate growth rates as:

$$\frac{1}{T} \ln \left(\frac{e_{it}}{e_{it-T}} \right) = \beta_0 + \beta_1 \frac{1}{T} \ln e_{it-T} + \beta_2 \frac{1}{T} \ln \left(\frac{y_{it-1}}{y_{it-T}} \right) + \beta_3 \frac{1}{T} \ln \left(\frac{n_{mit}}{n_{mit-T}} \right) + \alpha_t + \mu_{it}.$$ (20)

The subindex i denotes a given country, T denotes the number of periods of the analysis, and t is a given time-period. The variable e_{it-T} is the initial level of emissions at year 1992, and β_1 thus tests the existence of a convergence effect in the sample.

The term y_{it-1}/y_{it-T} is the lagged value of the economy’s GDP growth rate per capita. It accounts for changes in the size of the economy. Given the likely feedback of emissions on income, y_{it-1} is used for y_{it} in order to avoid endogeneity bias. When positive, this variable is expected to raise emissions as the scale of the economy increases.

The main contribution of this empirical model is the variable associated with coefficient β_3, that is, the effect of structural transformation on the pollution dynamics. The expected sign of β_3 is positive since a larger growth rate in industrial employment implies a dirtier mix of activities, which causes more pollution. This is the composition effect from Definition 2 where $g_\phi > 0$.

5The empirical method used here borrows from the model of Brock and Taylor (2010), and is also the method adopted by Criado et al. (2011).
The variable μ_t is the error term, it is assumed to be uncorrelated with the explanatory variables. The parameter α_t represents time-fixed effects to control for possible time-trends in the data.

A Hausman test was ran for each specification of the model, the initial hypothesis that the individual-level effects are adequately modeled by a random-effects model was systematically not rejected at the 1, 5, or 10% level. Consequently, random-effects estimator is chosen so the convergence variable, which is time-invariant, can be included. Despite the results of the Hausman test, one may still fear that unobserved country-specific characteristics may play a role. For this reason, we also provide the estimates of the model with the within estimator.

5.2 Regression results

Three specifications of model (20) are estimated. First, the variable of structural transformation (measured by β_3) is not included. The regression is thus similar to that of Brock and Taylor (2010) or Criado et al. (2011). Only in the second specification the average log-change in the share of industrial employment is added. Eventually, the average log-change in the share of services employment is also added in a third regression. Comparing the three specifications makes it possible to clearly identify the contribution of structural transformation.

In the three regressions the countries with a population below 1.5 million were removed, as well as OPEC countries. This was done because these may have specific development paths, due to their size or their important natural resource endowments. Table 2 displays the results.

The coefficients and their significance are very similar between the random and fixed effects model, confirming the relevance of the Hausman test in this case. Following this result, we will focus our comments on the model using random effects estimator. Overall, the model explains relatively well the variation of CO$_2$ emissions per capita growth over the 1992-2014 period, with a R-squared above 35%. When the variables of structural transformation is added, the explanatory power of the model rises above 42%.

The initial level of emissions per capita, which measures the convergence effect, significantly reduces the growth rate of subsequent emissions. In the first specification, a 10%
Table 2: Determinants of the growth rate in CO$_2$ emissions per capita in 120 countries over 1992-2014

<table>
<thead>
<tr>
<th></th>
<th>Δ log CO$_2$ emissions per capita</th>
<th>RE</th>
<th>FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial emissions per capita</td>
<td>-0.0032*** -0.0021*** -0.0021***</td>
<td>(0.0006)</td>
<td>(0.0005)</td>
</tr>
<tr>
<td>Δ GDP per capita ($t - 1$)</td>
<td>0.6224*** 0.5477*** 0.5578*** 0.6120*** 0.5378*** 0.5487****</td>
<td>(0.0942)</td>
<td>(0.0911)</td>
</tr>
<tr>
<td>Δ share of indu. employment</td>
<td>0.4174*** 0.4265***</td>
<td>(0.0716)</td>
<td>(0.0707)</td>
</tr>
<tr>
<td>Δ share of services employment</td>
<td>-0.0393 -0.0431</td>
<td>(0.1140)</td>
<td>(0.1132)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.0001 -0.0003 -0.0003 -0.0009 -0.0008 -0.0008</td>
<td>(0.0006)</td>
<td>(0.0005)</td>
</tr>
<tr>
<td>Observations</td>
<td>2757 2757 2757 2757 2757 2757</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time fixed-effects</td>
<td>Yes Yes Yes Yes Yes Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country fixed-effects</td>
<td>No No No Yes Yes Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-squared within</td>
<td>0.3550 0.4255 0.4250 0.2481 0.3875 0.3871</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-squared overall</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Standard errors are in parentheses, robust to country clustering.

*, ** and ***: significant at 10%, 5% and 1%, respectively.

increase in the log of CO$_2$ emissions in 1992 is associated with a decrease of 0.03% in the average log-change in CO$_2$ emissions. The lagged value of the annual GDP growth rate per capita is also significant at the 1% level, and positive. This is in line with scale effects identified by the literature.

In the second specification, the average log-change in industrial employment, which accounts for the effect of structural transformation, is positive and significant at the 1% level. This highlights the importance of the multi-sector analysis and sheds light on the composition effect. A 1% increase in the average log-change in the share of industrial employment increases the average log-change in CO$_2$ emissions by 0.42%, which is a quite large effect.

Even more striking is the importance of accounting for this composition effect. When comparing coefficients between the first and second specification, it is found that the importance of the convergence effect decreases by 34%. This quite large drop from -0.0032 to -0.0021 suggests that convergence forces were overestimated by previous studies which did not take structural transformation into account. Similarly, the coefficient of the scale effect, as measured by the GDP per capita growth rate, dropped from 0.62 to 0.55. The third specification adds the variation in the share of services employment. While it exhibits the expected negative sign, it is not significant.

In all, these results show that structural transformation is an important feature to understand the link between growth and the environment. In Appendix B.4, we show that the results are not dependent on the measure of structural transformation, by using the sectoral value-added of each sector. Now we examine the first findings by subgroups of countries.

5.3 Stages of structural transformation

In this section, we aim at improving our understanding of the previous average effect, and see whether the determinants of CO$_2$ emissions differ according to a country’s stage of structural transformation. Countries are thus divided between three groups: early, middle, and late stage. These groups were built on the basis of each country’s level of agricultural employment in 1992. Early-stage countries had, on average, 57% of their labor force located in the agricultural sector in 1992. Early-stage countries had, on average, 57% of their labor force located in the agricultural sector in 1992. For middle- and late-stage countries it was 25% and 5%, respectively. Each group is initially composed with 40 countries.
Contrary to the regressions shown in the previous section, here the results of the Hausman test differ. The initial hypothesis that the individual-level effects are adequately modeled by a random-effects model was rejected at the 5 and 10% levels for the countries in the early and middle stages of structural transformation, respectively. Consequently, we will focus on the results of the fixed-effects model. One inconvenient is that we lose the interpretation of a possible convergence effect, but the model yields unbiased coefficients. Results are given in Table 3.

Table 3: Growth rate in CO2 emissions per capita and stages of structural transformation

<table>
<thead>
<tr>
<th></th>
<th>∆ log CO2 emissions per capita</th>
<th>RE</th>
<th>FE</th>
<th>RE</th>
<th>FE</th>
<th>RE</th>
<th>FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial emissions per capita</td>
<td>-0.0037** -0.0053*** -0.0038**</td>
<td>(0.0018)</td>
<td>(0.0014)</td>
<td>(0.0019)</td>
<td>(0.0018)</td>
<td>(0.0014)</td>
<td>(0.0019)</td>
</tr>
<tr>
<td>∆ GDP per capita (t − 1)</td>
<td>0.7454*** 0.3415* 0.2740</td>
<td>(0.1280)</td>
<td>(0.1821)</td>
<td>(0.1719)</td>
<td>(0.1278)</td>
<td>(0.1843)</td>
<td>(0.1656)</td>
</tr>
<tr>
<td>∆ share of indu. employment</td>
<td>0.2358** 0.4423*** 0.2589*</td>
<td>(0.1133)</td>
<td>(0.1336)</td>
<td>(0.1502)</td>
<td>(0.1107)</td>
<td>(0.1245)</td>
<td>(0.1483)</td>
</tr>
<tr>
<td>∆ share of services employment</td>
<td>-0.0659 -0.1548 -0.7711**</td>
<td>(0.1267)</td>
<td>(0.3788)</td>
<td>(0.3393)</td>
<td>(0.1251)</td>
<td>(0.3742)</td>
<td>(0.3354)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.0068** 0.0032* 0.0072*</td>
<td>(0.0031)</td>
<td>(0.0017)</td>
<td>(0.0039)</td>
<td>(0.0018)</td>
<td>(0.0021)</td>
<td>(0.0011)</td>
</tr>
<tr>
<td>Observations</td>
<td>1012 920 825</td>
<td></td>
</tr>
<tr>
<td>Time fixed-effects</td>
<td>Yes Yes Yes</td>
<td></td>
</tr>
<tr>
<td>Country fixed-effects</td>
<td>No No No</td>
<td>Yes Yes Yes</td>
<td></td>
</tr>
<tr>
<td>R-squared within</td>
<td>-0.5137 0.4167 0.3293</td>
<td>0.4571 0.3217 0.2583</td>
<td>0.5650 0.2965 0.3350</td>
<td>0.5650 0.2965 0.3350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-squared overall</td>
<td>0.5137 0.4167 0.3293</td>
<td>0.4571 0.3217 0.2583</td>
<td>0.5650 0.2965 0.3350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard errors are in parentheses, robust to country clustering.

*, ** and ***: significant at 10%, 5% and 1%, respectively.

Different conclusions arise from the results. First, the signs of the different coefficients are as expected and are the same across stages. The scale effect is present and significant over the three stages of transformation, and appears to be stronger during the early stage. One must be careful when comparing the subgroups as the number of observations differ.
At the beginning of structural transformation, a 10% increase in the size of the economy is associated with a 7.387% increase in the average log-change of emissions per capita. The effect is more than twice as large as it is in the two other stages. This suggests that scale is key to understand the evolution of emissions in countries at an early stage of structural transformation.

Second, the average log-change in industrial employment increases the growth rate of CO₂ emissions per capita in early and middle stage countries. In countries at the late stage of structural transformation, we find that this is no more the variation in industrial employment that influences emissions, but it is the rise of services. Here, a 1% increase in the average log-change of services employment decreases by 0.84% the average log-change of CO₂ emissions per capita. This average effect is quite strong and somehow highlights the positive impact, in terms of climate change, of advanced countries de-industrializing. The following section offers a robustness analysis of these empirical results.

5.4 Robustness analysis

The main goal of this section is to control for omitted variables that would bias the results. For instance, in equation (2), the variation of Ω can influence emissions. This is the technique effect. To account for it, we introduce an index of “Environmental Policy Stringency”, which is provided by OECD and ranges from 0 (not stringent) to 6 (highest degree of stringency). It measures countries’ effective implementation of environmental policies and is defined as “the degree to which environmental policies put an explicit or implicit price on polluting or environmentally harmful behavior”. As detailed by Brunel and Levinson (2016), this measure is not perfect as it only takes into account some policy aspects. However, because of data availability, this is the best proxy that could be used here.

Another possible channel to explain emissions is trade openness. As North and South countries trade, dirtier industrial activities may move to the South and the coefficient measuring the effect of industrialization on pollution may thus be overestimated. To control this, we also include a variable of change in the rate of trade openness. These variables, espe-
cially the index of environmental policy stringency, are available only for a limited number of countries and years, so we obtain a panel of 28 countries over 1992-2012.6

Table 4 shows the results. The fixed-effects model is also presented, although the result of the Hausman test suggests that random effects are unbiased.

Table 4: Robustness analysis: accounting for technique effect and trade

<table>
<thead>
<tr>
<th></th>
<th>Δ log CO₂ emissions per capita</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RE</td>
</tr>
<tr>
<td>Initial emissions per capita</td>
<td>-0.0000</td>
</tr>
<tr>
<td>Δ GDP per capita (t – 1)</td>
<td>0.6568***</td>
</tr>
<tr>
<td></td>
<td>(0.1003)</td>
</tr>
<tr>
<td>Δ share of indu. employment</td>
<td>0.6900***</td>
</tr>
<tr>
<td></td>
<td>(0.1276)</td>
</tr>
<tr>
<td>Δ env. policy stringency</td>
<td>-0.0220</td>
</tr>
<tr>
<td></td>
<td>(0.0264)</td>
</tr>
<tr>
<td>Δ trade openness</td>
<td>-0.1112</td>
</tr>
<tr>
<td></td>
<td>(0.0947)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.0004</td>
</tr>
<tr>
<td></td>
<td>(0.0017)</td>
</tr>
<tr>
<td>Time fixed-effects</td>
<td>Yes</td>
</tr>
<tr>
<td>Country fixed-effects</td>
<td>No</td>
</tr>
<tr>
<td>Observations</td>
<td>588</td>
</tr>
<tr>
<td>R-squared within</td>
<td>0.6559</td>
</tr>
<tr>
<td>R-squared overall</td>
<td>0.6388</td>
</tr>
</tbody>
</table>

Standard errors are in parentheses, robust to country clustering.
*; ** and ***: significant at 10%, 5% and 1%, respectively.

First it is interesting to notice that in this sample of mainly OECD countries the convergence effect is not found significant. Indeed, the coefficient for the log of CO₂ emissions per capita in 1992 is not significantly different from zero. Second the scale effect (measured by growth in GDP per capita) and the composition effect are significant at the 1% level and with the expected signs. Notice that this is also true for the model with country fixed-

6 Trade openness is provided by the World Bank and is computed as the sum of imports plus exports over total GDP. The list of 29 countries is provided in Appendix A.
effects. Third, neither the variation in environmental policy stringency nor in trade openness significantly affect the growth rate of CO₂ emissions in the sample.

Another concern about the above results is that the lag of GDP growth rate may still be too linked with the variation in industrial employment, or the rate of change in emissions, even when using lagged values. To address this, we now present a model where the variation in the size of the economy is measured by other indicators than the GDP growth rate. Following Brock and Taylor (2010), we use the depreciation rate and the investment share of GDP. This also allows us to clearly show the contribution of accounting for structural transformation instead of relying solely on the green solow model. Table 5 displays the results.

Table 5: Regression results using Brock and Taylor (2010) model

<table>
<thead>
<tr>
<th></th>
<th>Δ log CO₂ emissions per capita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial emissions per capita</td>
<td>-0.0035*** (-0.0009)</td>
</tr>
<tr>
<td>Rate of depreciation</td>
<td>-0.0016** (-0.0007)</td>
</tr>
<tr>
<td>Investment share</td>
<td>0.0005*** (0.0001)</td>
</tr>
<tr>
<td>Δ share of indu. employment</td>
<td>0.3495*** (0.0742)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.0069*** (-0.0026)</td>
</tr>
</tbody>
</table>

Observations	2223	2223
Time fixed-effects	Yes	Yes
R² overall	0.1511	0.2220

Standard errors are in parentheses, robust to country clustering.
* , ** and ***: significant at 10%, 5% and 1%, respectively.

The signs and significance of the log of initial emissions, the depreciation rate and investment share are the same as Brock and Taylor (2010). Importantly, the growth rate in industrial employment is significant at the 1% level, and is positively correlated to the

7The rate of depreciation is computed as the population growth rate plus 0.05. The investment share is taken from the Penn World Table (7.1), and is available only until 2010. For this reason the panel is now from 1992 to 2010, and time fixed-effects are added.
annual growth rate in CO$_2$ emissions per capita. Again, it is interesting to observe that the coefficient of the convergence effect drops from -0.0035 to -0.0024 when the variation in industrial employment is taken into account. In other words, taking into account structural transformation lowers by 31% the importance of the convergence effect. In sum, this shows how a critical aspect of economic growth, namely structural transformation, cannot be ignored to understand accurately the environmental impacts of growth and development. Notice that the results remain when sectoral value-added is used as the index of structural transformation (see Appendix B.4).

6 Concluding remarks

This work has assessed the role of structural transformation in explaining the differences in CO$_2$ emissions across countries. For this purpose, a theoretical model was first developed where the driver of structural transformation was the difference between the growth rate of productivity across sectors, and pollution was a by-product of output. In comparison with previous empirical applications on growth and pollution, this multi-sector model explains a new parameter: the composition effect. It shows how a change in the sources of growth, precisely the rise of services and the contraction of the industrial sector, modifies emission intensity in the economy and may lower environmental degradation.

Then we have tested the theoretical predictions of the model in an empirical analysis of carbon dioxide in 120 countries over the 1992-2014 period. Our set of countries and time-span were larger than most previous studies, which allows us to bring new evidence. To account for the effect of structural transformation, we used the rate of variation in industrial employment across countries. The results showed that a decrease in industrial employment led to a decrease in the growth rate of CO$_2$ emissions. This occurs because the most polluting sector represents a lower share of economy’s output, and growth is globally more sustainable.

An important finding is that taking into account structural transformation lowers the importance of the traditional convergence forces by more than 30%. This shows that the mix of economic activity is another important factor to understand more accurately the impact of growth on the environment.
Our results also highlight that the determinants of pollution across countries vary according to the stage of structural transformation. Indeed, the rise of services significantly diminishes emissions in countries at the late stage of transformation. At other stages, this is the variation in the importance of the industrial sector that drives emissions per capita.

Following the conventional wisdom in the growth literature, if we may regret “premature deindustrialization” (Rodrik, 2016) in some developing countries, this piece of work suggests that the new forms of structural transformation, away from industry and towards services, could be at least less harmful for climate, on average.
References

Appendix A Data description

• **CO₂ emissions per capita (metric tons):** Carbon dioxide emissions are those stemming from the burning of fossil fuels and the manufacture of cement. They include carbon dioxide produced during consumption of solid, liquid, and gas fuels and gas flaring. *Source:* World Bank Data.

• **Employment per sector (% of total employment):** The agriculture sector consists of activities in agriculture, hunting, forestry and fishing, in accordance with division 1 (ISIC 2) or categories A-B (ISIC 3) or category A (ISIC 4). The industry sector consists of mining and quarrying, manufacturing, construction, and public utilities (electricity, gas, and water), in accordance with divisions 2-5 (ISIC 2) or categories C-F (ISIC 3) or categories B-F (ISIC 4). The services sector consists of wholesale and retail trade and restaurants and hotels; transport, storage, and communications; financing, insurance, real estate, and business services; and community, social, and personal services, in accordance with divisions 6-9 (ISIC 2) or categories G-Q (ISIC 3) or categories G-U (ISIC 4). *Source:* International Labour Organization, ILOSTAT database.

• **Environmental Policy Stringency:** country-specific index and internationally-comparable measure of the stringency of environmental policy. Stringency is defined as the degree to which environmental policies put an explicit or implicit price on polluting or environmentally harmful behavior. The index ranges from 0 (not stringent) to 6 (highest degree of stringency). The index covers 28 OECD and 6 BRIICS countries for the period 1990-2012. The index is based on the degree of stringency of 14 environmental policy instruments, primarily related to climate and air pollution. *Source:* OECD stat.

• **Environmental protection expenditures:** Millions USD, 2010 PPP prices. Environmental Protection includes all purposeful activities directly aimed at the prevention, reduction and elimination of pollution or any other degradation of the environment resulting from production or consumption processes. The scope of Environmental Protection is defined according to the Classification of Environmental Protection Activities (CEPA), which distinguishes nine different environmental domains. Activities such as
energy and material saving are only included to the extent that they mainly aim at environmental protection. Source: OECD stat.

- **GDP per capita (constant 2010 U.S. dollars):** gross domestic product divided by midyear population. GDP is the sum of gross value added by all resident producers in the economy plus any product taxes and minus any subsidies not included in the value of the products. It is calculated without making deductions for depreciation of fabricated assets or for depletion and degradation of natural resources. Data are in constant 2010 U.S. dollars. Source: World Bank national accounts data, and OECD National Accounts data files.

- **Investment:** Share of PPP Converted GDP Per Capita at 2005 constant price (%). Source: Penn World Table 7.1.

- **Population growth (%):** Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. Source: World Bank Data.

- **Value added per sector (% of GDP):** Value added is the net output of a sector after adding up all outputs and subtracting intermediate inputs. It is calculated without making deductions for depreciation of fabricated assets or depletion and degradation of natural resources. The origin of value added is determined by the International Standard Industrial Classification (ISIC), revision 3. Source: World Bank Data.

Following ILO classification and ISIC-Rev. 4, sector assignments in Figure 3 are:

- **Agriculture:** ISIC section A with Agriculture, forestry and fishing.

- **Industry:** sum of ISIC sections B-F.

- **Services:** sum of ISIC sections G-S.

List of countries in regressions of Table 4: Australia, Austria, Belgium, Canada, China, Czech Republic, Denmark, Finland, France, Germany, Greece, India, Indonesia, Ireland, Italy, Japan, Korea, Rep., Mexico, Netherlands, Norway, Portugal, South Africa, Spain, Sweden, Switzerland, Turkey, United Kingdom, United States.
Appendix B Additional data analysis

B.1 Abatement in the public sector

Figure 6 shows the public sector expenditures for environmental protection in some OECD countries. As for the manufacturing sector, expenditures for environmental protection represents a low and non-increasing share of GDP in those countries.

Figure 6: Public sector expenditures in Environmental Protection in 23 OECD countries over 1997-2012; Source: OECD.
B.2 Emission intensity and industrial sector

Figure 7 shows the link between the amount of emissions per unit of output and the share of industrial employment in 2014 across countries.

Figure 7: Emissions per unit of GDP and industrial employment in 2014; Source: WDI.

There is a strong positive relationship between the level of industrial employment across countries and the amount of CO$_2$ emissions per unit of GDP. This suggests that a multi-sector model can bring new information on the link between growth and pollution.
B.3 Structural transformation: the rise of services

Figure 8 shows the change in services employment between 1992 and 2014 in the countries of the sample.

Figure 8: The rise of services in the 120 countries of the sample;
Source: ILO.

Only very few countries have a lower share of employment in services in 2014 than in 1992. This highlights the general trend of structural change in the sample, away from agriculture towards industry and services.
B.4 A different measure of structural transformation

One may wonder if the results are dependent on the indicator used to measure transformation. To test this possibility, we now use sectoral value-added (as a share of GDP), instead of employment. As detailed in Appendix A, the variables for sectoral value-added are taken from the World Development Indicators. It presents the inconvenient of being available only by 1997 for some countries. These countries were thus removed from the sample, and we obtain a panel of 92 countries over 1992-2014. Table 6 displays the results.

Table 6: Determinants of growth in CO\textsubscript{2} emissions in 92 countries over 1993-2014

<table>
<thead>
<tr>
<th></th>
<th>(\Delta \log \text{CO}_2) emissions per capita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log initial emissions per capita</td>
<td>-0.0036*** -0.0033*** -0.0033***</td>
</tr>
<tr>
<td></td>
<td>(0.0007) (0.0007) (0.0007)</td>
</tr>
<tr>
<td>(\Delta) GDP per capita ((t - 1))</td>
<td>0.5867*** 0.5645*** 0.5731***</td>
</tr>
<tr>
<td></td>
<td>(0.1166) (0.1177) (0.1247)</td>
</tr>
<tr>
<td>(\Delta) share of indu. value-added</td>
<td>0.1809** 0.1735**</td>
</tr>
<tr>
<td></td>
<td>(0.0738) (0.0714)</td>
</tr>
<tr>
<td>(\Delta) share of services value-added</td>
<td>-0.0380</td>
</tr>
<tr>
<td></td>
<td>(0.1144)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.0000 0.0002 0.0002</td>
</tr>
<tr>
<td></td>
<td>(0.0009) (0.0008) (0.0008)</td>
</tr>
<tr>
<td>Observations</td>
<td>2024 2024 2024</td>
</tr>
<tr>
<td>R2 overall</td>
<td>0.3832 0.3951 0.4066</td>
</tr>
<tr>
<td>Time fixed-effects</td>
<td>Yes Yes Yes</td>
</tr>
</tbody>
</table>

Standard errors are in parentheses, robust to country clustering.
* *, ** and ***: significant at 10%, 5% and 1%, respectively.

The results are very similar to those from Table 2. The model is well explained with a R-squared around 40%, and when industrial value-added increases (in share of GDP), the growth rate of CO\textsubscript{2} emissions increases. The effect of services again exhibits the right sign but is not significant. This shows that structural transformation, as measured by employment or value-added shares, is a critical aspect of the link between economic growth and the environment.