P. Barbillon, S. Donnet, E. Lazega, and A. Bar-hen, Stochastic block models for multiplex networks: an application to a multilevel network of researchers, Journal of the Royal Statistical Society: Series A (Statistics in Society), vol.35, issue.1, 2016.
DOI : 10.1017/CBO9780511815478

URL : https://hal.archives-ouvertes.fr/hal-01520820

J. Baudry, G. Celeux, and J. Marin, Selecting Models Focussing on the Modeller???s Purpose, pp.337-348, 2008.
DOI : 10.1007/978-3-7908-2084-3_28

C. Biernacki, G. Celeux, and G. Govaert, Assessing a mixture model for clustering with the integrated completed likelihood. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.22, issue.7, pp.719-725, 2000.
DOI : 10.1109/34.865189

V. Brault, Estimation et sélection de modèle pour le modèle des blocs latents, Thèse de doctorat dirigée par Celeux, p.2014

T. Oliver, . Coomes, J. Shawn, E. Mcguire, S. Garine et al., Farmer seed networks make a limited contribution to agriculture ? four common misconceptions, Food Policy, vol.56, pp.41-50, 2015.

W. Dáttilo, N. Lara-rodríguez, P. Jordano, P. R. Guimarães, J. N. Thompson et al., Unravelling Darwin's entangled bank: architecture and robustness of mutualistic networks with multiple interaction types, Proceedings of the Royal Society of London B: Biological Sciences, pp.283-2016, 1843.

J. J. Daudin, F. Picard, and S. Robin, A mixture model for random graphs, Statistics and Computing, vol.4, issue.2, pp.173-183, 2008.
DOI : 10.1007/s11222-007-9046-7

URL : https://hal.archives-ouvertes.fr/inria-00070186

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Jr. R. Stat. Soc. B, vol.39, pp.1-38, 1977.

N. Gaskó, F. Bota, M. Suciu, and R. I. Lung, Community structure detection in multipartite networks, Proceedings of the Genetic and Evolutionary Computation Conference on , GECCO '17, pp.259-265
DOI : 10.1145/1557019.1557107

G. Govaert and M. Nadif, Block clustering with Bernoulli mixture models: Comparison of different approaches, Computational Statistics & Data Analysis, vol.52, issue.6, pp.3233-3245, 2008.
DOI : 10.1016/j.csda.2007.09.007

G. Govaert and M. Nadif, Clustering with block mixture models, Pattern Recognition, vol.36, issue.2, pp.463-473, 2003.
DOI : 10.1016/S0031-3203(02)00074-2

T. S. Jaakkola, Tutorial on variational approximation methods In In Advanced Mean Field Methods: Theory and Practice, pp.129-159, 2000.

C. Keribin, V. Brault, G. Celeux, and G. Govaert, Estimation and selection for the latent block model on categorical data, Statistics and Computing, vol.22, issue.2, pp.1-16, 2014.
DOI : 10.1007/s11222-011-9233-4

URL : https://hal.archives-ouvertes.fr/hal-00802764

S. Kéfi, V. Miele, E. A. Wieters, S. A. Navarrete, and E. L. Berlow, How Structured Is the Entangled Bank? The Surprisingly Simple Organization of Multiplex Ecological Networks Leads to Increased Persistence and Resilience, PLOS Biology, vol.44, issue.8, pp.1-21, 2016.
DOI : 10.1371/journal.pbio.1002527.s015

E. Lazega and T. Snijders, Multilevel Network Analysis for the Social Sciences: Theory, Methods and Applications. Methodos Series, 2015.
DOI : 10.1007/978-3-319-24520-1

URL : https://hal.archives-ouvertes.fr/hal-01495096

M. Mariadassou, S. Robin, and C. Vacher, Uncovering latent structure in valued graphs: A variational approach, The Annals of Applied Statistics, vol.4, issue.2, pp.715-742, 2010.
DOI : 10.1214/07-AOAS361SUPP

URL : https://hal.archives-ouvertes.fr/hal-01197514

C. Matias and V. Miele, Statistical clustering of temporal networks through a dynamic stochastic block model, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.4, issue.4, pp.1119-1141, 2017.
DOI : 10.1214/10-AOAS359

URL : https://hal.archives-ouvertes.fr/hal-01167837

C. Matias and S. Robin, Modeling heterogeneity in random graphs through latent space models: a selective review, ESAIM: Proceedings and Surveys, pp.55-74, 2014.
DOI : 10.1051/proc/201447004

URL : https://hal.archives-ouvertes.fr/hal-00948421

M. Pautasso, G. Aistara, A. Barnaud, S. Caillon, P. Clouvel et al., Seed exchange networks for agrobiodiversity conservation . a review. Agronomy for sustainable development, pp.151-175, 2013.

S. Pilosof, A. Mason, M. Porter, S. Pascual, and . Kéfi, The multilayer nature of ecological networks, Nature Ecology & Evolution, vol.2, issue.4, 2016.
DOI : 10.1038/nature07532

URL : https://hal.archives-ouvertes.fr/hal-01938723

J. Michael, . Pocock, M. Darren, J. Evans, and . Memmott, The robustness and restoration of a network of ecological networks, Science, vol.335, issue.6071, pp.973-977, 2012.

V. Robert, Coclustering for the analysis of pharmacovigilance large datasets. Theses, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01695568

A. B. Tom, K. Snijders, and . Nowicki, Estimation and prediction for stochastic blockmodels for graphs with latent block structure, J. Classification, vol.14, issue.1, pp.75-100, 1997.

M. Thomas and S. Caillon, Effects of farmer social status and plant biocultural value on seed circulation networks in Vanuatu, Ecology and Society, vol.21, issue.2, p.2016
DOI : 10.5751/ES-08378-210213

URL : http://www.ecologyandsociety.org/vol21/iss2/art13/ES-2016-8378.pdf

M. Thomas, N. Verzelen, P. Barbillon, T. Oliver, S. Coomes et al., A Network-Based Method to Detect Patterns of Local Crop Biodiversity, Advances in Ecological Research, pp.259-320, 2015.
DOI : 10.1016/bs.aecr.2015.10.002

URL : https://hal.archives-ouvertes.fr/hal-01239543

J. Yang and J. Leskovec, Community-Affiliation Graph Model for Overlapping Network Community Detection, 2012 IEEE 12th International Conference on Data Mining, pp.1170-1175, 2012.
DOI : 10.1109/ICDM.2012.139