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Abstract
Models are promising tools to support the design of cropping systems toward sustainable agriculture. Process-based deterministic
models are predominantly used, whereas most of them involve a limited range of crop techniques, and are unsuited to organic
agriculture. Moreover, their parameterization and local adaptation require a large amount of experimental data. We thus designed
a model simulating the yields of successive crops, taking into account the effects of most crop techniques embedded in a cropping
system, and suited for both conventional and organic farming. This model was designed assuming that its parameterization,
mostly based on expert-knowledge elicitation, could enlarge the range of environmental conditions and crop techniques consid-
ered. The PerSyst model involves three types of parameters based on expert knowledge: (i) reference yields reached in the most
common cropping system conditions, (ii) yield change due to crop sequence variation, and (iii) yield change due to variation in
crop management. These parameters are stochastic to report yield variability across climatic years. The model was parameterized
through an original expert elicitation method—combining individual interviews and collective validation—on three case studies,
including one in organic farming. Model accuracy was assessed for two long-term experiments. Parameters such as yield change
due to crop sequence and to crop management were close among case studies, highlighting possibilities to compensate for a local
lack of knowledge.Moreover, simulated yields in both experiments showed great consistency with observed yields, with average
relative root-mean-square error of prediction of 15% for winter wheat and faba bean for example. For the first time, thanks to
expert-knowledge parametrization, we built a cropping system model, considering all techniques, which could be easily tailored
to a diversity of conditions, both in conventional and organic farming. Lastly, advantages and limits of the PerSyst model to
assess innovative cropping systems were discussed.
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1 Introduction

Major changes in the current cropping systems are required to
face numerous challenges, such as environmental preservation
(Millenium Ecosystem Assesment 2005), food security, and

economic value-creation. Models are often used to simulate a
large number of alternatives and quickly assess their perfor-
mances (Rossing et al. 1997; Sadok et al. 2008), as the number
of alternatives tested in system-experiments cannot be high
(Colnenne-David and Doré 2015).

Two types of models have been developed for the de-
sign or ex ante assessment of cropping systems. The first
type relates to mechanistic and dynamic soil-crop models,
such as DSSAT (Jones et al. 2003) or CROPSYST
(Stockle et al. 2003) for arable cropping systems. They
generally concern a low range of crop techniques, com-
pared to those existing in farmers’ fields, and apply main-
ly to those dealing with water and nitrogen stresses. A
few models deal with soil tillage, preceding crop effect,
or pest management (e.g., Florsys for weed management
in Gardarin et al. 2012), but to our knowledge, none
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addresses incidence on crop yields. As these models are
highly sensitive to environmental conditions, they require
large amounts of input data and extensive preliminary
experiments, although experimental data are not always
available in the environmental conditions in which
cropping systems are to be designed or assessed. This
reliance on input data could limit their use, as Plaza-
Bonilla et al. (2015) and Jones et al. (2003) have pointed
out.

The second type of models is based on input-output rela-
tionships derived from production ecology theory (Van
Ittersum and Rabbinge 1997). These models include
TCG_CROP (Rossing et al. 1997), ROTOR (Bachinger
and Zander 2007), and ROTAT (Dogliotti et al. 2003).
Only three sets of parameters are usually required to esti-
mate crop yield: parameters related to potential yield, to
yield losses due to limiting factors (i.e., water and nutrient
availability), and to yield losses due to reducing factors (i.e.,
weeds, pests, and diseases). Most of these models also rely
on experimental data, but in some of them, parameterization
relies on expert knowledge, thus enlarging the range of crop
techniques and environments considered (De Wispelare et
al. 1995; Girard and Hubert 1999). This makes it possible
to assess cropping systems using innovative combinations of
crop techniques for which experimental data are scarce, and
aiming at achieving a set of goals, such as cropping systems
aiming at decreasing the use of pesticides while maintaining
profitability (Jacquet et al. 2011). To our knowledge, only a
few applications have been developed for specific targets in
agronomy. They deal with the encoding of expert knowledge
on grazing management in a model (Girard and Hubert
1999) and with the elicitation of expert knowledge to eval-
uate agricultural production systems (Cornelissen et al.
2003). In Adam et al. (2013), expert knowledge is even used
for crop model reassembly. However, none of these exam-
ples simulates crop yield considering both crop sequence
and crop management effects.

The aim of this study is to design the PerSyst model
for arable cropping systems, both for conventional farming
(CF) and organic farming (OF) conditions. This model
aims at simulating crop yields taking into account most
of the components of cropping systems. To reach this
target, the PerSyst model combines both process-based
and input-output sub-models, and both stochastic and de-
terministic parameters. To parameterize such a model, we
first built and implemented an expert elicitation-based
method at a local scale (region or département) and
assessed its reproducibility through three case studies. We
then assessed the predictive capacity of PerSyst for two
long-term experiments in organic farming (Fig. 1).

2 Materials and methods

2.1 General organization of the PerSyst model

PerSyst simulates the effects of the whole cropping system
(i.e., a crop sequence and the crop management of each crop)
on the yield of each individual crop (Fig. 2). The time step of
simulation is the year. For each simulation, input variables
include location, soil type, climate, and a description of the
cropping system to be simulated. The outputs are yields
achieved for each crop. PerSyst is composed of five sub-
models: (i) reference yield sub-model, (ii) crop sequence
sub-model, (iii) N requirement sub-model, (iv) crop N man-
agement sub-model, and (v) crop management sub-model
(Fig. 2). For three sub-models among five, parameters are
represented by distributions, taking into account the major
part of yield variability across years. As the model is stochas-
tic, a simulation is composed of several iterations; the number
of which is to be defined by the user. Thus, each iteration
results in a single output value for predicted yield, randomly
sampled from these distributions, and a given simulation re-
sults in a distribution of actual yield gathered from iterations.

2.2 Sub-models of the PerSyst model

2.2.1 Reference yield sub-model

This sub-model estimates the reference yield for each
crop, which is the yield supposed to be achieved within
a crop sequence widely practiced by farmers, and with a
crop management that aims at minimizing yield losses
due to limiting and reducing factors, as much as

Fig. 1 Field of winter wheat under organic farming in the Île-de-France
region
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possible on farm conditions. The input variables for this
sub-model are soil type (i), nature of the crop (j), and
location (a given case study). The output variable of
this sub-model is the reference yield (Y_REFij).
Parameters of this sub-model represent minimum and
maximum values, and the probability distribution
reflecting variability across years. At each iteration,
Y_REFij is calculated from Eq. (1).

Y REFij is sampled from y ref distij in y ref minij : y ref maxij
� �

ð1Þ
with

Y_REFij Reference yield (t ha−1) for a crop j
grown in a soil type i

y_ref_distij Reference yield distribution between
y_ref_minij and y_ref_maxij for a crop j
grown in a soil type i

y_ref_minij and
y_ref_maxij

Reference yield (t ha−1) for a crop j
grown in a soil type i in years with
unfavorable or favorable climatic
conditions, respectively

2.2.2 Crop sequence sub-model

This sub-model calculates yield change due to the crop se-
quence from the reference yield Y_REFij. It takes into account
the preceding crop (k) effect (Sebillotte 1990), and the effect
of the duration (l) of the period between the crops susceptible
to the same diseases or pathogens in the crop sequence.
Changes could be losses, as well as gains, for crop sequences
respectively less or more favorable than those widely prac-
ticed by farmers and used as a reference in the previous step.
The input variables of this sub-model are the nature and order
of crops in the crop sequence. For each iteration, yield changes

are randomly sampled from a uniform distribution. The output
data is the yield within the crop sequence (Y_CSijkl), calculated
from Eq. (2):

Y CSijkl ¼ Y REFij þ YC CSPijk þ YC CSRijl ð2Þ

with

Y_CSijkl Yield of the crop j in the soil type i after
the crop k for a return time l, within the
crop sequence (t ha−1)

YC_CSPijk Yield change (t ha−1) due to the
preceding crop effect, for a crop j
grown in a soil i after a preceding crop
k, randomly sampled between
yc_csp_minijk and yc_csp_maxijk

yc_csp_minijk and
yc_csp_maxijk

minimum and maximum yield losses
due to the preceding crop effect,

YC_CSRijl Yield change (t ha−1) due to the return
time of a crop i in a soil j for a return
time l randomly selected between
yc_csr_minijl and yc_csr_maxijl
(respectively, minimum and maximum
yield losses due to the return time).

yc_csr_minijl and
yc_csr_maxijl

respectively minimum and maximum
yield losses due to the return time.

2.2.3 Nitrogen requirement sub-model

This process-based sub-model estimates the amount of nitro-
gen (X_MAXijklm) required to achieve the crop sequence yield
Y_CSijkl according to the balance-sheet method. It takes into
account nitrogen supply from mineralization of soil organic
matter and of the residues of the preceding cash crop and
preceding cover crop (Meynard et al. 1997). The input vari-
ables are the nitrogen requirement per ton of yield of the crop

Fig. 2 Inputs, outputs, and sub-
models of the PerSyst model
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(j), the characteristics of the soil (i) (i.e., organic matter, clay,
limestone, and stone contents), the nature of the preceding
crop (k), and cover crop (m), the residue management tech-
niques and average temperature, as a driver of mineralization
process (see Eq. 3). This sub-model is not fully described here,
as it is based on equations and parameters already described
by Bockstaller and Girardin (2008).

X MAX ijklm ¼ Y CSijkl:b j þ N SSmini–N SSEWjk–N SMij–N ICMjm–N PCMk–N ABS j

ð3Þ
with

X_MAXijkm Amount of nitrogen required by crop j in soil i
after preceding crop k and preceding cover crop
m to achieve yield within the crop sequence (kg

N ha−1)
bji Amount of nitrogen required to achieve one unit

of yield of crop j (kg N t−1)
N_SSmini Minimum nitrogen soil status for soil i (kg N

ha−1)
N_SMij Amount of nitrogen from the mineralization of

soil organic matter for soil i (as a function of
organic matter, clay, limestone and stone
contents, and average annual temperature)
available for crop j (kg N ha−1)

N_SSEWjk Nitrogen soil status at the end of winter between
preceding crop k and crop j (kg N.ha

−1)
N_ICMjm Amount of nitrogen from the mineralization of

residues from cover-cropm preceding crop j (kg
N ha−1)

N_PCMk Amount of nitrogen from the mineralization of
residues from preceding crop k (kg N ha−1)

N_ABSj Amount of nitrogen absorbed in autumn by
crop j (kg N ha−1)

2.2.4 Crop nitrogen management sub-model

This sub-model simulates yield change of each crop ac-
cording to the nitrogen rate applied, based on the crop
yield response according to a “linear_plus_plateau” model
(Makowski et al. 1999; Makowski et al. 2001). The input
variable is the total nitrogen rate applied. The output var-
iable is the yield including nitrogen management
(Y_Nijklm), calculated from Eq. (4).

If X ≥XMAX ; Y Nijklm ¼ Y CSijkl
else Y Nijklm ¼ Y CSijkl–aj X MAX ijkm–X i

� � ð4Þ

with

Y_Nijklm Yield including nitrogen management (t ha−1) for a
crop j in soil i after preceding crop k and preceding
cover crop m

aj Yield loss (t ha−1) per missing kilogram of nitrogen
for a crop j (estimated by Makowski et al. 2001 for
winter wheat and corn and from expert knowledge
for the other crops).

Xi Total amount of nitrogen applied in the form of
inorganic nitrogen fertilizer or manure (kg N ha−1)

2.2.5 Crop management sub-model

This sub-model simulates yield change of each crop as a
function of the combination of crop management tech-
niques applied to it. Crop management techniques such
as sowing period, cultivar choice, and pest management
techniques are characterized through options, as proposed
in Loyce et al. (2002). For example, the “sowing date”
options could be “standard,” “advanced,” or “delayed,”
depending on the reference sowing period defined for
the considered location. Cultivar choice options could
be, for the case of winter wheat (Triticum aestivum L.),
“high productivity and high sensitivity to lodging,” and
“low productivity and low sensitivity to lodging,” etc.
Insecticide, fungicide, or growth regulator application op-
tions could be: “no” or “yes” or “no”, “light”, “standard,”
or “enhanced”.

Each simulated crop management plan is converted in-
to qualitative scores characterizing yield change, through
a decisional tree based on the DEXi software (Bohanec
and Rajkovic 1990). Leaves of the tree are crop tech-
niques, and trunk is yield change (Fig. 3a, b). Crop tech-
niques are gathered into intermediate variables (e.g., lodg-
ing risk), which are described by utility functions, allocat-
ing an intermediate qualitative score of yield change (e.g.,
yield change due to lodging). For a given crop, the struc-
ture of the tree is to be adapted from one region to anoth-
er. The final score (yield change due to sowing, pests, and
lodging (Fig. 3a)) is then converted into a quantitative
yield change value, randomly selected from a uniform
distribution. The output variable of this sub-model is the
yield, including the crop management effect (Y_CMijklmn),
calculated from Eq. (5).

The direct effect of N fertilizer applications on yield is not
considered in this sub-model as it is already taken into account
in the previous one. Here, N fertilization only influences lodg-
ing, or increases pest incidence for N rates exceeding
X_MAXijklm. Conversely, even if a crop sequence sub-model
was described previously, several characteristics of the crop
sequence are considered in this sub-model, in order to take
into account the mitigation of a crop sequence effect by an
appropriate crop management. For example, we included the
effect of an enhanced fungicide protection of winter wheat to
partly compensate for the unfavorable effect of a preceding
cereal. Another example concerns how weeding can
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Fig. 3 Organization of the crop management and weed management sub-
models: qualitative score of yield change due to the combination of crop
techniques. aCropmanagement sub-model: some effects differ according

to the type of system (CF conventional farming, OF organic farming) or
the region (EL only in Eure-et-Loir département). b. Weed management
sub-model for organic farming
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compensate for the presence of weeds due to the crop se-
quence.

Y Aijklmn ¼ Y Nijklm þ YC CMijn ð5Þ

with

Y_Aijklmn Actual yield (t ha−1) for a crop j in a soil
i after a preceding crop k, a return time l,
a preceding cover cropm, and a score of
losses due to crop management n (i.e.,
sowing date, sowing rate, cultivar
choice, tillage, and pest management).

YL_CMijm Yield losses due to crop management
(t ha−1) for a crop j in a soil i and a score
n of losses due to crop management
randomly selected between
yl_cm_minijn and yl_cm_maxijn

yl_cm_minijn and
yl_cm_maxijn

Minimum and maximum yield losses
due to crop management).

2.3 The expert elicitation method used for parameter
estimation

PerSyst was parameterized independently in three study areas:
(i) in the Bourgogne region (eastern France) for CF, for eight
soil types and 11 crops; (ii) in the Eure-et-Loir département
(central France) for CF, for five soil types and 12 crops; and
(iii) in the Île-de-France region (central France) for OF, for
eight soil types and 18 crops.

As explained above, PerSyst parameterization partly relied
on expert knowledge. We designed and implemented a two-
step elicitation method, combining individual interviews and
collective meeting in each region.

The first step aimed at gathering expert knowledge without
the influence of a group. We considered as an expert any
person with knowledge about one or several crops involved
in the PerSyst model and farmers practices in the study areas.
We paid attention to select people from various organizations:
23 experts were interviewed in Bourgogne (10 from chambers
of agriculture, eight from cooperatives, and five from techni-
cal institutes), 18 in Eure-et-Loir (six from chambers of agri-
culture, four from cooperatives, six from technical institutes,
one from a farm accounting firm, and one from a research lab
in agronomy), and two in Île-de-France from a chamber of
agriculture. We tried to interview at least five experts by case
study, as recommended by O’Hagan et al. (2006), but it was
not possible in Île-de-France, as there were few experts on OF
in this region. We began each interview by an introductory
talk, explaining the aim of the study and what the expert could
get from it, to minimize motivational biases. Then, we asked
the expert to define a value for each parameter. To cover all
crops and soil types for which experts had knowledge, each

interview lastedmaximum half a day. The following questions
were addressed to set the parameters in brackets:

What is the achievable yield for a crop j grown in a soil type
i, in years with unfavorable and favorable climatic conditions,
respectively, within a crop sequence widely practiced by
farmers, and with management minimizing yield losses as
much as possible on-farm conditions? (y_ref_minij and
y_ref_maxij).

What is the preceding crop in such a widely practiced crop
sequence, and what is the return time of the crop j?

What are the characteristics of such a management mini-
mizing yield losses? (i.e., fallow period management, soil till-
age, sowing date, rate and cultivar choice, nitrogen fertiliza-
tion practices, and pest management strategy).

What is the yield distribution within this range considering
the 10 last years: are low yields as frequent as high yields, or
more frequent, or less frequent? (y_ref_distij).

What are the consequences on yield for a crop j grown in a
soil type i of a preceding crop k in comparison to the preceding
crop defined as a reference, without any changes in crop man-
agement? (yc_csp_minijk and yc_csp_maxijk).

What could be changed in crop management consistently
to the preceding crop? What would be the consequences on
yield?

What are the consequences on yield for a crop j grown in a
soil type i of a return time l in comparison to the return time
defined as a reference, without any changes in crop manage-
ment? (yc_csr_minijl and yc_csr_maxijl).

What could be changed in crop management consistently
to the return time; which consequences on yield?

Could you describe an alternative management for a crop j
grown in a soil type i, contrasting to the management defined
as a reference? (e.g., a low-input management).

What are the consequences on yield of such a management,
for a crop j in a soil i after a preceding crop k, a return time l?
(yl_cm_minijn and yl_cm_maxijn).

The second step aimed at reaching a consensus for each
parameter, among the diversity of answers provided by all
experts. Prior to the meeting, the information gathered from
individual interviews was summarized. During the meeting,
for each parameter, the distribution of answers given by ex-
perts was presented through minimum, mean, and maximum
values. Attendees were asked to collectively agree on a single
value. For Bourgogne and Eure-et-Loir case studies, two full-
day meetings were necessary to discuss all parameters. For
these two regions, about 6 months passed between the first
interview and the last group meeting. For the Île-de-France
case study, a collective meeting made no sense because of
the limited number of experts interviewed. We thus arranged
a meeting with experts from neighboring regions, additionally
to the two experts interviewed: They were asked to give their
opinion on the consistency of the parameterization. This meet-
ing helped us to tailor some parameter values.
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2.4 Assessment of the predictive capacity of PerSyst

The predictive capacity of PerSyst was assessed for the Île de
France case study by comparing simulated yields with actual
yields measured on two long-term experiments in OF in the
Île-de-France region. The first experiment (“Boigneville”)
was located in the southern part of Île-de-France, under an
intermediate (60–80-cm depth), non-hydromorphic loam-
clay-calcareous soil. The 4.7-ha plot was divided into six
sub-plots, each characterized by a 6-year crop sequence
(Fig. 5). This experiment was set in 2007, and yields had been
recorded over 5 years when the yield comparison was carried
out. The second experiment (“La Motte”) was located in the
north-western part of Île-de-France, under a deep (> 100 cm)
hydromorphic and beating loamy soil. The 64-ha plot was
divided into eight sub-plots, each characterized by an 8-year
crop sequence. This experiment took place in 2003, and
9 years of yields were used for the model assessment. This
experiment, managed by a farmer on his own farm, was rep-
resentative of on-farm conditions, with a cropping system
close to the OF current practices in the region. In contrast,
the “Boigneville” experiment took place on a site dedicated
to experiments and was managed by a staff from a technical
institute. The crop rotation was innovative, including crops
not currently grown in the region. The crop management
was also innovative; for example, the last cut of alfalfa was
not taken away, to preserve soil fertility, which is not a wide-
spread technique. For both sites, the average yields measured
across years for each crop, as well as minimum and maximum
observed yields, were provided by people in charge of exper-
iments (who were not involved as experts to parameterize
PerSyst). Each crop of the crop sequence was supposed to
be grown every year, but both crop sequences showed flexi-
bility within time. For example, the last crop of the rotation
was most frequently a winter oat (Avena sativa L.) on the “La
Motte” experiment, but it was another secondary cereal 4 years
upon 9. Thus, the number of available yield values for a given
crop was sometimes smaller than the duration of the experi-
ment. The PerSyst model was then used to predict yields for
these two cropping systems, each simulation involving 10
iterations. The predictive quality was assessed through the
relative root-mean-square error of prediction (R-RMSEP),
calculated for the average, minimum, and maximum values
across years. The R-RMSEP was estimated, for each crop,
across both experiments.

R−RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y A sim−Y A obsð Þ2

q

Y A obs

with

Y_A_obs Average or minimum or maximum observed yield
across available years

Y_A_sim Average or minimum or maximum actual yield
predicted with the PerSyst model from ten
iterations.

3 Results and discussion

3.1 Estimation of the reference yield parameters
of PerSyst

For each crop present in each region, y_ref_min, y_ref_max, and
y_ref_dist parameters are shown for two soil types (a deep soil
and a shallow one) in each case study (Fig. 4). Within a given
case study, y_ref_min and y_ref_max showed differences be-
tween soil types. For instance, for winter wheat in Bourgogne,
y_ref_max for the shallow soil (7.5 t ha−1) was close to
y_ref_min for the deep one (7.1 t ha−1). For quite similar soil
types among regions, these parameters also showed differences,
according to the case study. For instance, for winter wheat in
Bourgogne, y_ref_min was set at 7.1 t ha−1 and y_ref_max at
10.5 t ha−1 for deep clay loam soil, whereas these parameters
were set respectively at 6.5 and 15 t ha−1 in Eure-et-Loir for a
deep loam soil with similar maximum soil water content (SWC).
These ranges are consistent with public statistics: Over the past
15 years, the average yield reached 6.6 t ha−1 (varying from 5 to
7.5 t ha−1) in Bourgogne and 7.9 t ha−1 (varying from 6.3 to
8.6 t ha−1) in the Eure-et-Loir (Agreste 2017). This highlights
the need for a local parameterization of reference yield.

y_ref_dist also showed differences between soils or be-
tween case studies. For instance, for winter wheat in
Bourgogne, a right-skewed distribution was chosen for deep
soils, whereas a left-skewed one was chosen for shallow soils.
To argue this difference, experts quoted a more frequent oc-
currence of low yields due to stronger drought in shallow soils
than in deep ones because of a lower maximum SWC. Experts
collectively agreed on the same form of distribution for all
winter crops, all being similarly exposed to drought due to
their growth cycle. In Eure-et-Loir, a left-skewed distribution
was chosen for deep loam soils, consistently with a very high
y_ref_max value chosen by experts, corresponding to excep-
tional yields. Unlike the Bourgogne region, there was no ge-
neric rule across crops concerning y_ref_dist, for instance, a
normal distribution was chosen for winter wheat on clay-
calcareous soils, whereas a left-skewed one was chosen for
winter barley.

3.2 Estimation of the parameters dealing with yield
change due to preceding crop

Contrary to the reference yield values, the values proposed by
experts for winter wheat yield change due to the preceding
crop were close among regions. In all case studies, experts
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chose a single value rather than a range of values.
Consequently, in all case studies, YC_csp_min was equal to
YC_csp_max for each ijk “crop × soil type × preceding crop”
combination.

In addition, experts also chose to set the same value for all
soil types in a case study. It could be a constant value, as in
Bourgogne where the experts considered that yield change
due to the preceding crop was independent of the reference

Fig. 4 y_ref_min (i.e., reference yield in years with unfavorable
conditions, e.g., 3.3 t ha−1 for oilseed rape on DS in the Bourgogne
region) y_ref_max (i.e., reference yield in years with favorable
conditions, e.g., 5 t ha−1 for oilseed rape on DS in the Bourgogne
region) and y_ref_dist (i.e., values distribution described by the bar

plots) parameters for several crops and for a shallow soil type (SS) and
a deep soil type (DS) among the three case studies. NA means non-
parameterized crops, as the set of crops parameterized is not the same
among case studies
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yield, or a percentage of the reference yield, as in Eure-et-Loir
or Île-de-France, where the experts considered that yield
changes were correlated with the reference yield. To allow
comparisons across case studies, and consistently with
Schneider and Huyghe (2015) who presented preceding crop
effects in decitonne per hectare, percentages were changed
into constant values (Table 1), based on reference yield values
shown in Fig. 4.

The crop defined as the reference preceding crop (i.e., the
one that makes it possible to reach the reference yield) differed
from one case study to another: oilseed rape (Brassica napus
L.) in Bourgogne, spring pea (Pisum sativum L.) in Eure-et-
Loir, and alfalfa (Medicago sativaL.) in Île-de-France. To allow
comparisons across case studies, values were converted to the
same baseline (oilseed rape) for all case studies (Table 1).

The values chosen by experts showed great consistency
across case studies. In all case studies, cereals were set as
the worst preceding crops for winter wheat with yield loss
around 1 t ha−1. This yield loss was explained by experts by
an increase of diseases on the winter wheat following a cereal,
as they are host crops for several foot- and root-borne patho-
gens (Colbach et al. 1997a; Colbach et al. 1997b). Experts
also mentioned other factors causing yield decline in cropping
systems with short rotations, such as deleterious rhizosphere
microorganisms (Bennett et al. 2012). Corn (Zea mays L.) and
sunflower (Helianthus annuus L.) were set as intermediate
preceding crops, resulting in yield loss around 0.5 t ha−1, ex-
cept for Île-de-France for which it was defined as equivalent to
straw cereals. In Bourgogne, as well as in Eure-et-Loir, winter
and spring peas were defined as favorable preceding crops
with yield gain around 0.2 t ha−1 compared to oilseed rape.
In comparison to winter wheat, this represents a yield gain
between 0.6 and 1.4 t ha−1, which is consistent with
Schneider and Huyghe (2015) who quantified an increase of
0.84 t ha−1 from on-farm data gathered in the north of France

from 1991 to 2008 when pea was used as the preceding crop
rather than a winter wheat. In addition, in the Île-de-France
region, another annual grain legume—faba bean (Vicia faba
var.minor Peterm.)—was given the same effect on yield of the
following crop than oilseed rape. In Bourgogne and Île-de-
France, alfalfa was defined as the most favorable preceding
crop, with yield gains from 0.3 to 1.2 t ha−1.

As yield changes due to the crop sequence were similar for
the three case studies in terms of sign (positive or negative)
and ranking, they could be estimated in a more generic way
for other study areas. Data analysis on preceding crop effects
in Europe, obtained from the LINK (Legume Interactive
Network) project, has shown that these effects were close
across regions (Pahl et al. 2000). Thus, using meta-analysis
synthesizing published data to assess yield changes due to
crop sequence (e.g., Philibert et al. 2012; Cernay et al. 2016)
could compensate for the lack of expert knowledge in some
study areas.

3.3 Estimation of the parameters describing yield
change due to crop management of PerSyst

In the three case studies, the sub-model assessing yield change
due to crop management presents many similarities, even if
specific elements occur in each of them, as shown for the
example of winter wheat on Fig. 3a. First, in all case studies,
yield change due to crop management plan was broken down
into: (i) change due to sowing practices and (ii) change due to
pest and lodging management practices. Yield change due to
sowing practices always involved the effects of sowing date,
sowing rate, and cultivar choice. Yield change due to pest and
lodging practices encompassed diseases, insects, and lodging
for case studies in CF. In OF, experts considered that yield
change due to weeds was so high that the other reducing
factors were negligible. For winter wheat, diseases were

Table 1 yc_csp_min and yc_csp_
max (t ha−1) parameters for
several winter wheat preceding
crops and for a shallow soil type
(SS) and a deep soil type (DS)
among the three case studies. NA
means non-parameterized crops,
as the set of crops parameterized
is not the same among case
studies

Case-studies Bourgogne—CF Eure-et-Loir—CF Île-de-France—OF

Crops Soil types DS SS DS SS DS SS

Oilseed rape Reference Reference Reference

Winter wheat − 1 − 1 − 0.45 − 1.05 − 0.55 − 1.2
Winter barley − 1 − 1 − 0.45 − 1.05 NA NA

Spring barley − 1 − 1 − 0.45 − 1.05 − 0.55 − 1.2
Buckwheat NA NA NA NA 0 0

Corn − 0.3 − 0.3 − 0.20 − 0.50 − 0.55 − 1.2
Sunflower − 0.4 − 0.4 − 0.25 − 0.60 0 0

Winter/spring pea + 0.2 + 0.2 + 0.15 + 0.35 NA NA

Winter faba bean NA NA NA NA 0 0

Winter pea—triticale NA NA NA NA 0 0

Fiber flax NA NA NA NA 0 0

Alfalfa + 0.3 + 0.3 NA NA + 0.5 + 1.2
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broken down into foliar diseases and soil-borne diseases, be-
cause they are not influenced by the same crop techniques.
Foliar diseases depended on fungicide application as a cura-
tive technique, and on preventive techniques including sowing
date, sowing rate, and cultivar choice. Soil-borne diseases
differed in respect of the preventive techniques involved: In
addition to tillage, the preceding crop was included to allow
for compensation of an unfavorable preceding crop by an
enhanced fungicide protection. Yield change due to insects
included insecticides and sowing date effects. In Eure-et-
Loir only, this variable also included cultivar choice as a pre-
ventive technique against orange blossom midge (Sitodiplosis
mosellana Gehin), whereas in Bourgogne, this pest was con-
sidered negligible. Yield change due to lodging included
growth regulators and, as preventive techniques, nitrogen fer-
tilization, sowing rate, and cultivar choice.

Changes due to weeds were broken down into annual and
perennial weeds, as they are not influenced by the same crop
techniques (Fig. 3b). Crop techniques involved in this sub-
model were weeding techniques (mechanical weeding only
for OF case study) as well as other crop techniques that could
affect weed dynamics or crop competitiveness (e.g., sowing
date, sowing rate, plowing). In addition to crop techniques,
this sub-model involved several crop rotation characteristics
(e.g., presence of a pluriannual crop or diversity of sowing
periods).

The various winter wheat management plans described by
experts made it possible to fill in utility functions for each
node of the tree, so that the tree ordered these management
plans consistently.

The formalization of yield change due to crop management
for other crops was adapted from the one developed for winter
wheat, the most complete among all crops. Two types of ad-
aptation were made. First, branches or leaves have been re-
moved when not relevant (e.g., yield change due to diseases
for corn, or nitrogen fertilization for legume crops). Second,
utility functions have been adapted to translate the influence of
various attributes on yield (e.g., yield change due to sowing
practices was higher for spring crops than for winter crops,
according to expert knowledge).

Implemented in three regions, this formalization seems to
be robust enough to be used in many French regions, with
minor adaptations. The PerSyst model is currently under pa-
rameterization in the Hauts-de-France region (north of France)
for both CF and OF, using the crop management effect sub-
models presented in this paper. It also presents a flexibility that
allows it to be adapted for a wider variety of conditions. For
example, it was possible to parameterize the PerSyst model for
inland valleys of West Africa (Furian et al. 2015) thanks to
changes in crop management sub-models, to adapt them to
other reduction factors and other local crop techniques.
However, additional work on PerSyst is under progress.
First, the nitrogen requirement and management sub-models

could take profit of recent studies on drivers of soil minerali-
zation. Moreover, the three case studies developed in this pa-
per involved rainfed cropping systems, thus not requiring to
consider irrigation. PerSyst was also parameterized in the
Midi-Pyrénées region, located in the South-West of France
and with a large part of irrigated cropping systems. To take
into account this technique, irrigated and rainfed crops were
distinctly parameterized, with different potential yields (e.g.,
rainfed corn and irrigated corn). Including irrigation into crop
management, sub-model would make it possible to consider
the effect on yield of variations in irrigation rate, as well as
interactions between irrigation and other techniques (e.g., dis-
ease management).

3.4 Assessment of the predictive capacity of PerSyst

Simulated yields fitted well with observed values for winter
faba bean and winter wheat (Fig. 5), with average R-RMSEP
onmean yield of 15% for faba bean as well as for winter wheat.
This R-RMSEP was lower than those obtained for other crop
models. For example, for wheat, RMSEP in conventional and
low-input conditions amounted to 1.05 t ha−1 for the Azodyn
model (David and Jeuffroy 2009) and to 1.59 t ha−1 for the
STICS model (Brisson et al. 2002). As a comparison, with
the PerSyst model, the 15% R-RMSEP mentioned above for
wheat corresponds to a RMSEP of 0.50 t ha−1. Besides, Plaza-
Bonilla et al. (2015) quoted a R-RMSEP of 23% for grain yield
simulated with the STICS model among three crop rotations,
including sorghum (Sorghum bicolor L. Moench), sunflower,
durum wheat (Triticum durum Desf.), soybean (Glycine max
(L.) Merr.), and pea.

Simulated yields also correctly reported the variability of
observed yields with average R-RMSEP on minimum and
maximum yields of 18 and 14% for winter wheat, respective-
ly. For winter faba bean too, average R-RMSEP on minimum
and maximum yields was small, with 6 and 3%, respectively.
However, R-RMSEP was not calculated for situations with
observed yields equal to 0. As a result, it did not report that
1 year on the “La Motte” experiment, no faba bean was har-
vested because of a combination of factors reducing the yield
to 0 t ha−1, while at the same time, PerSyst predicted no yield
under 2.1 t ha−1.

Relative RMSEP was higher for other crops: 29% for win-
ter pea—triticale (Triticosecale) intercropped, 55% for winter
oat, 58% for spring barley (Hordeum vulgare L.), 61% for
alfalfa, and 293% for flax (Linum usitatissimum L.). PerSyst

�Fig. 5 Mean yields predicted with the PerSyst model for Boigneville and
La Motte experiments, and mean yields observed on the experiments
(error bars represent the amplitude of yields predicted across iterations
or observed across the duration of experiments) root-mean-square error of
prediction (RMSEP) and relative RMSEP (in brackets) are given for
minimum, mean, and maximum simulated yields)

33 Page 10 of 14 Agron. Sustain. Dev. (2018) 38: 33



Agron. Sustain. Dev. (2018) 38: 33 Page 11 of 14 33



was parameterized to simulate fiber flax yields, whereas oil-
seed flax was grown in the “Boigneville” experiment, which
explains the high value of relative RMSEP for this crop.
Concerning the second year of growth of alfalfa, predicted
yields were higher than observed yields, especially for the
“Boigneville” experiment. In that experiment, at least the last
harvest was mulched instead of being harvested, to increase
nitrogen soil status, whereas the yield simulated by PerSyst
assumed three annual harvests, thus explaining the gap be-
tween observed and simulated yields. Regarding these results,
accuracy seems to depend on the amount of knowledge the
experts have on each crop. It was especially good for winter
wheat and winter faba bean, which are major crops in organic
cropping systems of the Île-de-France region. Accuracy is
lower for crops such as spring barley or winter oat, which
are less widespread on farmers’ fields and thus, for which
expert knowledge may be more limited. Although it took
place in one experiment, oilseed flax was even not parameter-
ized because acreage at regional scale was so scarce that the
experts had no sufficient knowledge about this crop. This
could be a limitation to overcome to make the model relevant
to assess highly innovative cropping systems. New methods
mixing local expert knowledge with literature data need to be
developed with this aim, as proposed by Laurent et al. (2015),
to combine between-site and within-site information and thus
to obtain information on a new crop which was not
experimented at a given site.

Beside the capacity to predict accurate yield values,
these results illustrate the capacity of the PerSyst model
to correctly rank yields. Especially, simulations gave a
good account of winter wheat yield according to its place
within the crop sequence for both experiments: The first
winter wheat had higher simulated yields than the second
winter wheat, with a yield difference consistent with the
yield difference observed. Among experiments and the po-
sition of winter wheat within the crop sequences, winter
wheat yield changes due to the crop sequence sub-model
varied from 0 to 0.9 t ha−1. Changes due to the crop
nitrogen management sub-model varied from 0.3 to
0.7 t ha−1. Changes due to crop management sub-model
varied from 0 to 0.9 t ha−1. This result highlighted the
importance of all sub-models. Indeed, the reference yield
sub-model only enabled to differentiate yields for a given
crop between sites, according to location and soil charac-
teristics. However, it was not sufficient to differentiate
yields for a given crop cultivated many times in a given
site. This could be the case of a given crop occurring
more than once in a cropping system, as observed for
winter wheat for both experiments or the case of a given
crop occurring in different cropping systems on a given
site. However, it is necessary to assess the model on ad-
ditional sites, including sites in conventional farming, for
which incidence of various limiting and reducing factors

on yield may be different. This assessment is currently in
progress in the Hauts de France region, located in the
north of France.

3.5 Experience-based analysis of the method

The parameterization of the PerSyst model for these three case
studies illustrated that it is relevant to rely on expert knowledge
to fill in parameters related to yield, especially the parameters
related to reference yield. We have already discussed about one
of the limitations encountered, i.e., considering new crops and
new management techniques in PerSyst, and possibilities to
overcome them. Yet, additional difficulties in gathering the re-
quired expertise could be noticed. As illustrated by the Île-de-
France case study, it is not always possible to gather a minimum
number of five experts, as recommended by O’Hagan et al.
(2006). However, rather than the quantity of experts involved
in the parameterization, our experience showed that the quality
of their knowledge is much more important. Indeed, we man-
aged to set an accurate parameterization for organic farming in
Île-de-France, with only two experts. Our feeling was that in
organic farming, agronomists and farmers have to deal with crop
sequence effects and combine techniques to manage pests with-
out chemicals, making the experts more experienced with the
questions at the cropping system scale. In contrast, some experts
interviewed in other case studies struggled to identify alterna-
tives to the reference cropping system they described and con-
sequences on yield. It is hard to draw further criterions to select
experts, as their ability to answer our questions did not appeared
directly linked to their age, the number of years of experience in
the study area, or the institution they belong to. Thus, our rec-
ommendations to reproduce the method elsewhere are to inter-
view all the experts motivated, and then to rely on the group
discussions to set a consensus making sense for each parameter.
In the Bourgogne and Eure-et-Loir case studies, where a large
number of experts were involved, both groups expressed a
strong satisfaction about these discussions. They particularly
appreciated to share values about achievable yields for example,
for which they had no shared reference documents. In this sense,
PerSyst parameterization contributed to formalize and share tacit
knowledge. Beside the knowledge of experts involved, the skills
of the person leading the parameterization process are also crit-
ical for its success. Indeed, a background in agronomy of
cropping systems is required to have a full comprehension of
the answers given by experts, especially for filling in the crop
management sub-model.

Our results first illustrated the feasibility of parameterizing
a cropping system model from expert knowledge. Consistent
results among case studies were obtained for yield change due
to crop sequence and yield change due to crop management,
highlighting possibilities to overcome local lack of knowl-
edge. Second, the model and its expert-knowledge-based pa-
rameterization showed a good accuracy in predicting yields on
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two long-term experiments, giving account of crop sequence
and crop management effect on yield. As yield is not the only
relevant indicator to take into account for cropping system
assessment, an evolution in progress is to implement in the
model the calculation of indicators derived from yield (e.g.,
nitrogen losses, gross margin, workload). The use of this mod-
el by local stakeholders to assess a priori the interest of inno-
vative cropping systems should be enhanced by adding such
indicators, among those proposed by Sadok et al. (2008),
allowing a multi-criteria assessment.

4 Conclusion

The PerSyst model was developed with the aim of simulating
the yield of various crops within a cropping system. Taking
into account the numerous effects of the combination of prac-
tices characterizing a cropping system (including rotation,
sowing, soil tillage, pesticide applications, and fertilization),
for a large number of crops, both in conventional and organic
systems, was possible only by mixing expert and scientific
knowledge in the algorithms and parameter estimation. A ro-
bust and reproducible method of expert elicitation to obtain
the parameters for a region was proposed. Indeed, we showed
that for some parameters (e.g., yield change due to crop se-
quence), close values were chosen among case studies. In
addition, we demonstrated the good predictive capacity of
the PerSyst model for organic farming in the Île-de-France
region.

In the future, the PerSyst model could be improved by
linking the climatic variability resulting in the yield distribu-
tions, with the weather conditions influencing pest or disease
pressure and nitrate leaching, while keeping the parsimonious
characteristics of PerSyst in terms of parameter number. This
improvement could help to assess innovative cropping sys-
tems faced with climate change. Lastly, it could be interesting
to use the PerSyst model to perform a general assessment of
organic versus conventional systems, considering the whole
cropping system.
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