. Nacl, The dialyzed fraction containing the His 6 -LytT protein was further loaded onto a 1 ml Hitrap heparin column (GE) to remove contaminants (Text S1). The P pftAB DNA substrate for His 6 -CcpA and His 6 -LytT was PCR amplified from strain BSB168 using Cy5-labeled primers (P1, CCATGGTTTAATTCAACGTATAATC; P2, CGTACACTTTTTTAGCACTCATTTTCTTCACC) while the P pftAB-?lytT1, Samples eluted with 50 mM Tris-HCl (pH 8.0), 1 M NaCl, and 250 mM imidazole were dialyzed against a solution containing 50 mM Tris-HCl (pH 8.0), 0.4 M NaCl, 50% glycerol, 1 mM dithiothreitol (DTT)

, For EMSAs with His 6 -LytT, 50 ng of DNA substrate was used with 50 g · ml ?1 of nonspecific competitor poly

, 10 ng of DNA substrate was used with 400 g · ml ?1 sheared salmon sperm DNA competitor. Samples were loaded onto a 6% or 8% acrylamide (19:1) native gel in Tris-acetate-EDTA (TAE), migration was carried out at 20 V · cm ?1 and imaged on a ChemiDoc imaging system, CcpA protein was mixed with the serine-phosphorylated HPr (kind gift of Josef Deutscher) in a 1:10 molar ratio

H. P. Bais, T. L. Weir, L. G. Perry, S. Gilroy, and J. M. Vivanco, The role of root exudates in rhizosphere interactions with plants and other organisms, 2006.

, Annu Rev Plant Biol, vol.57, pp.233-266

P. B. Larsen, J. Degenhardt, C. Y. Tai, L. M. Stenzler, S. H. Howell et al., Aluminum-resistant Arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots, Plant Physiol, vol.117, pp.9-18, 1998.

T. Rudrappa, K. J. Czymmek, P. W. Paré, and H. P. Bais, Root-secreted malic acid recruits beneficial soil bacteria, Plant Physiol, vol.148, pp.1547-1556, 2008.

R. Allard-massicotte, L. Tessier, F. Lécuyer, V. Lakshmanan, J. F. Lucier et al., Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors, vol.7, pp.1664-1680, 2016.

Z. Ahmad, J. Wu, L. Chen, and W. Dong, Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR, Sci Rep, vol.7, p.1777, 2017.

K. Tanaka, K. Kobayashi, and N. Ogasawara, The Bacillus subtilis YufLM two-component system regulates the expression of the malate transporters MaeN (YufR) and YflS, and is essential for utilization of malate in minimal medium, Microbiology, vol.149, pp.2317-2329, 2003.

V. Chubukov, M. Uhr, L. Chat, L. Kleijn, R. J. et al., Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis, Mol Syst Biol, vol.9, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01204283

K. Hirooka, Y. Kodoi, T. Satomura, and Y. Fujita, Regulation of the rhaE-WRBMA operon involved in L-rhamnose catabolism through two transcriptional factors, RhaR and CcpA, in Bacillus subtilis, J Bacteriol, vol.198, pp.830-845, 2015.

A. Ochiai, T. Itoh, A. Kawamata, W. Hashimoto, and K. Murata, Plant cell wall degradation by saprophytic Bacillus subtilis strains: gene clusters responsible for rhamnogalacturonan depolymerization, Appl Environ Microbiol, vol.73, pp.3803-3813, 2007.

H. Watzlawick, M. Heravi, K. Altenbuchner, and J. , Role of the ganSPQAB operon in degradation of galactan by Bacillus subtilis, J Bacteriol, vol.198, pp.2887-2896, 2016.

V. Barbe, S. Cruveiller, F. Kunst, P. Lenoble, G. Meurice et al., From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later, Microbiology, vol.155, pp.1758-1775, 2009.

R. J. Kleijn, J. M. Buescher, L. Chat, L. , J. M. Aymerich et al., Metabolic fluxes during strong carbon catabolite repression by malate in Bacillus subtilis, J Biol Chem, vol.285, pp.1587-1596, 2010.

F. M. Meyer, J. M. Mehne, F. M. , L. Coq, D. Landmann et al., Malate-mediated carbon catabolite repression in Bacillus subtilis involves the HPrK/CcpA pathway, J Bacteriol, vol.193, pp.6939-6949, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01019483

S. Herzig, E. Raemy, S. Montessuit, J. L. Veuthey, N. Zamboni et al., Identification and functional expression of the mitochondrial pyruvate carrier, Science, vol.337, pp.93-96, 2012.

D. K. Bricker, E. B. Taylor, J. C. Schell, T. Orsak, A. Boutron et al., A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans, Science, vol.337, pp.96-100, 2012.

E. Jolkver, D. Emer, S. Ballan, R. Krämer, B. J. Eikmanns et al., Identification and characterization of a bacterial transport system for the uptake of pyruvate, propionate, and acetate in Corynebacterium glutamicum, J Bacteriol, vol.191, pp.940-948, 2009.

A. H. Hosie, D. Allaway, and P. S. Poole, A monocarboxylate permease of Rhizobium leguminosarum is the first member of a new subfamily of transporters, J Bacteriol, vol.184, pp.5436-5448, 2002.

F. Kunst, N. Ogasawara, I. Moszer, A. M. Albertini, G. Alloni et al., The complete genome sequence of the Gram-positive bacterium Bacillus subtilis, Environ Microbiol, vol.390, pp.83-94, 1997.

P. Nicolas, U. Mäder, E. Dervyn, T. Rochat, A. Leduc et al., Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis, Science, vol.335, pp.1103-1106, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01000245

A. M. Earl, R. Losick, and R. Kolter, Ecology and genomics of Bacillus subtilis, Trends Microbiol, vol.16, pp.269-275, 2008.

J. M. Buescher, W. Liebermeister, J. M. Uhr, M. Muntel, J. Botella et al., Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism, Science, vol.335, pp.1099-1103, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01000240

K. Kobayashi, S. D. Ehrlich, A. Albertini, G. Amati, K. K. Andersen et al., Essential Bacillus subtilis genes, Proc Natl Acad Sci U S A, vol.100, pp.4678-4683, 2003.

K. Tanaka, C. S. Henry, J. F. Zinner, E. Jolivet, M. P. Cohoon et al., Building the repertoire of dispensable chromosome regions in Bacillus subtilis entails major refinement of cognate large-scale metabolic model, Nucleic Acids Res, vol.41, pp.687-699, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01190671

D. R. Reuss, J. Altenbuchner, U. Mäder, H. Rath, T. Ischebeck et al., Large-scale reduction of the Bacillus subtilis genome: consequences for the transcriptional network, resource allocation, and metabolism, Genome Res, vol.27, pp.289-299, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02626760

S. Li, D. Huang, Y. Li, J. Wen, and X. Jia, Rational improvement of the engineered isobutanol-producing Bacillus subtilis by elementary mode analysis, Microb Cell Fact, vol.11, p.101, 2012.

S. A. Leyn, M. D. Kazanov, N. V. Sernova, E. O. Ermakova, P. S. Novichkov et al., Genomic reconstruction of the transcriptional regulatory network in Bacillus subtilis, J Bacteriol, vol.195, pp.2463-2473, 2013.

T. Doan, P. Servant, S. Tojo, H. Yamaguchi, G. Lerondel et al., The Bacillus subtilis ywkA gene encodes a malic enzyme and its transcription is activated by the YufL/YufM twocomponent system in response to malate, Microbiology, vol.149, pp.2331-2343, 2003.

G. Lerondel, T. Doan, N. Zamboni, U. Sauer, and S. Aymerich, YtsJ has the major physiological role of the four paralogous malic enzyme isoforms in Bacillus subtilis, J Bacteriol, vol.188, pp.167-173, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00164221

Y. Chen, K. Gozzi, F. Yan, and Y. Chai, Acetic acid acts as a volatile signal to stimulate bacterial biofilm formation. mBio 6:e00392, 2015.

M. R. Sadykov and K. W. Bayles, The control of death and lysis in staphylococcal biofilms: a coordination of physiological signals, Curr Opin Microbiol, vol.15, pp.211-215, 2012.

T. R. Pick, A. Bräutigam, M. A. Schulz, T. Obata, A. R. Fernie et al., PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters, Proc Natl Acad Sci U S A, vol.110, pp.3185-3190, 2013.

Y. Yang, H. Jin, Y. Chen, W. Lin, C. Wang et al., A chloroplast envelope membrane protein containing a putative LrgB domain related to the control of bacterial death and lysis is required for chloroplast development in Arabidopsis thaliana, New Phytol, vol.193, pp.81-95, 2012.

T. Zhu, Q. Lou, Y. Wu, J. Hu, Y. F. Qu et al., Impact of the Staphylococcus epidermidis LytSR two-component regulatory system on murein hydrolase activity, pyruvate utilization and global transcriptional profile, BMC Microbiol, vol.10, p.287, 2010.

L. Fried, S. Behr, and J. K. , Identification of a target gene and activating stimulus for the YpdA/YpdB histidine kinase/response regulator system in Escherichia coli, J Bacteriol, vol.195, pp.807-815, 2013.

S. Behr, L. Fried, and K. Jung, Identification of a novel nutrient-sensing histidine kinase/response regulator network in Escherichia coli, J Bacteriol, vol.196, pp.2023-2029, 2014.

A. J. Wolfe, The acetate switch, Microbiol Mol Biol Rev, vol.69, pp.12-50, 2005.

K. Wei, M. Moinat, T. R. Maarleveld, and F. J. Bruggeman, Stochastic simulation of prokaryotic two-component signalling indicates stochasticityinduced active-state locking and growth-rate dependent bistability, Mol Biosyst, vol.10, pp.2338-2346, 2014.

J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular cloning: a laboratory manual, 1989.

C. R. Harwood and S. M. Cutting, Chemically defined growth media and supplements, p 548, Molecular biological methods for Bacillus, 1990.

H. M. Blencke, G. Homuth, H. Ludwig, U. Mäder, M. Hecker et al., Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways, Metab Eng, vol.5, pp.133-149, 2003.

A. M. Guérout-fleury, N. Frandsen, and P. Stragier, Plasmids for ectopic integration in Bacillus subtilis, Gene, vol.180, issue.96, pp.404-404, 1996.

E. Botella, M. Fogg, J. M. Piersma, S. Doherty, G. Hansen et al., pBaSysBioII: an integrative plasmid generating gfp transcriptional fusions for high-throughput analysis of gene expression in Bacillus subtilis, Microbiology, vol.156, pp.1600-1608, 2010.

P. Servant, L. Coq, D. Aymerich, and S. , CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes, Mol Microbiol, vol.55, pp.1435-1451, 2005.

M. Steinmetz and R. Richter, Easy cloning of mini-Tn10 insertions from the Bacillus subtilis chromosome, J Bacteriol, vol.176, pp.1761-1763, 1994.

G. P. Doherty, M. J. Fogg, A. J. Wilkinson, and P. J. Lewis, Small subunits of RNA polymerase: localization, levels and implications for core enzyme composition, Microbiology, vol.156, pp.3532-3543, 2010.

O. Delumeau, F. Lecointe, J. Muntel, A. Guillot, E. Guédon et al., The dynamic protein partnership of RNA polymerase in Bacillus subtilis, Proteomics, vol.11, pp.2992-3001, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000647

N. Mirouze, C. Ferret, Z. Yao, A. Chastanet, and R. Carballido-lópez, MreB-dependent inhibition of cell elongation during the escape from competence in Bacillus subtilis, PLoS Genet, vol.11, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02631205