R. Anguelov, Y. Dumont, and J. Lubuma, Mathematical modeling of sterile insect technology for control of anopheles mosquito, Computers & Mathematics with Applications, vol.64, issue.3, pp.374-389, 2012.
DOI : 10.1016/j.camwa.2012.02.068

URL : https://hal.archives-ouvertes.fr/halsde-00732800

R. Anguelov, Y. Dumont, and J. Lubuma, On nonstandard finite difference schemes in biosciences, AIP Conf. Proc., 1487 (2012), pp.212-223
DOI : 10.1063/1.4758961

D. Bainov and P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, 1993.

P. Bliman, M. S. Aronna, F. C. Coelho, and M. A. Da-silva, Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control, Journal of Mathematical Biology, vol.74, issue.3, pp.76-1269, 2018.
DOI : 10.1137/13093354X

URL : https://hal.archives-ouvertes.fr/hal-01261164

K. Bourtzis, Wolbachia- Based Technologies for Insect Pest Population Control, pp.104-117, 2008.
DOI : 10.1007/978-0-387-78225-6_9

E. Chambers, L. Hapairai, B. A. Peel, H. Bossin, and S. Dobson, Male Mating Competitiveness of a Wolbachia-Introgressed Aedes polynesiensis Strain under Semi-Field Conditions, PLoS Neglected Tropical Diseases, vol.48, issue.1, p.1271, 2011.
DOI : 10.1371/journal.pntd.0001271.t002

URL : https://doi.org/10.1371/journal.pntd.0001271

C. Dufourd and Y. Dumont, Modeling and Simulations of mosquito dispersal. The case of Aedes albopictus, BIOMATH, vol.1, issue.2, pp.1209262-1209263, 2012.
DOI : 10.11145/j.biomath.2012.09.262

URL : http://www.biomathforum.org/biomath/index.php/biomath/article/download/j.biomath.2012.09.262/125

Y. Dumont and J. M. Tchuenche, Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus, Journal of Mathematical Biology, vol.47, issue.6, pp.809-855, 2012.
DOI : 10.1111/j.1365-2664.2010.01880.x

R. Durrett and S. A. Levin, The Importance of Being Discrete (and Spatial), Theoretical Population Biology, vol.46, issue.3, pp.46-363, 1994.
DOI : 10.1006/tpbi.1994.1032

V. A. Dyck, J. Hendrichs, and A. S. Robinson, The Sterile Insect Technique, Principles and Practice in Area-Wide Integrated Pest Management, 2006.

J. Z. Farkas, S. A. Gourley, R. Liu, and A. Yakubu, Modelling Wolbachia infection in a sex-structured mosquito population carrying West Nile virus, Journal of Mathematical Biology, vol.42, issue.7, pp.75-621, 2017.
DOI : 10.1007/978-3-540-78911-6_14

URL : https://link.springer.com/content/pdf/10.1007%2Fs00285-017-1096-7.pdf

J. Z. Farkas and P. Hinow, Structured and Unstructured Continuous Models for??Wolbachia Infections, Bulletin of Mathematical Biology, vol.42, issue.8, pp.2067-2088, 2010.
DOI : 10.1111/j.0014-3820.2005.tb01812.x

URL : https://link.springer.com/content/pdf/10.1007%2Fs11538-017-0386-y.pdf

A. Fenton, K. N. Johnson, J. C. Brownlie, and G. D. Hurst, , and a Natural Enemy, The American Naturalist, vol.178, issue.3, pp.333-342, 2011.
DOI : 10.1086/661247

L. Hapairai, J. Marie, S. P. Sinkins, and H. Bossin, Effect of temperature and larval density on Aedes polynesiensis (Diptera: Culicidae) laboratory rearing productivity and male characteristics, Acta Tropica, vol.132, p.132, 2013.
DOI : 10.1016/j.actatropica.2013.11.024

L. K. Hapairai, M. A. Sang, S. P. Sinkins, and H. C. Bossin, Population studies of the filarial vector aedes polynesiensis (diptera: Culicidae) in two island settings of french polynesia, Journal of medical entomology, pp.50-965, 2013.

M. Hertig and S. B. Wolbach, Studies on rickettsia-like micro-organisms in insects, The Journal of medical research, p.329, 1924.

M. Huang, X. Song, and J. Li, Modelling and analysis of impulsive releases of sterile mosquitoes, Journal of Biological Dynamics, vol.13, issue.1, pp.147-171, 2017.
DOI : 10.1016/j.ecolmodel.2007.03.038

URL : http://www.tandfonline.com/doi/pdf/10.1080/17513758.2016.1254286?needAccess=true

H. Hughes and N. F. Britton, Modelling the Use of Wolbachia to Control Dengue Fever Transmission, Bulletin of Mathematical Biology, vol.310, issue.5, pp.796-818, 2013.
DOI : 10.1126/science.1117607

URL : http://opus.bath.ac.uk/34502/1/bmbrevision.pdf

L. and J. Jr, Filariasis in american samoa. y. bionomics of the principal vector, aedes polynesiensis marks, American journal of hygiene, pp.60-186, 1954.

L. K. Hapairai, Studies on Aedes polynesiensis introgression and ecology to facilitate lymphatic filariasis control, 2013.

R. Lees, B. Knols, R. Bellini, M. Benedict, A. Bheecarry et al., Review: Improving our knowledge of male mosquito biology in relation to genetic control programmes, Acta Tropica, vol.132, pp.132-134, 2014.
DOI : 10.1016/j.actatropica.2013.11.005

URL : https://hal.archives-ouvertes.fr/hal-01285430

J. Li and Z. Yuan, Modelling releases of sterile mosquitoes with different strategies, Journal of Biological Dynamics, vol.7, issue.1, pp.1-14, 2015.
DOI : 10.1016/j.mbs.2009.08.009

URL : https://doi.org/10.1080/17513758.2014.977971

B. H. Johnson, E. A. Kay, A. F. Mcgraw, P. A. Van-den-hurk, and S. L. Ryan, A wolbachia symbiont in aedes aegypti limits infection with dengue, chikungunya, and plasmodium, Cell, pp.139-1268, 2009.

G. Nadin, M. Strugarek, and N. Vauchelet, Hindrances to bistable front propagation: application to Wolbachia invasion, Journal of Mathematical Biology, vol.19, issue.2, 2017.
DOI : 10.1090/S0894-0347-05-00504-7

URL : https://hal.archives-ouvertes.fr/hal-01442291

L. O. Connor, C. Plichart, A. C. Sang, C. L. Brelsfoard, H. C. Bossin et al., Open release of male mosquitoes infected with a wolbachia biopesticide: Field performance and infection containment, PLOS Neglected Tropical Diseases, vol.6, pp.1-7, 2012.

C. F. Oliva, D. Damiens, and M. Q. Benedict, Male reproductive biology of Aedes mosquitoes, Acta Tropica, vol.132, pp.12-19, 2014.
DOI : 10.1016/j.actatropica.2013.11.021

J. L. Rasgon and T. W. Scott, Wolbachia and cytoplasmic incompatibility in the california culex pipiens mosquito species complex: parameter estimates and infection dynamics in natural populations, Genetics, pp.165-2029, 2003.

F. Rivière, Ecologie de Aedes (Stegomyia) polynesiensis, Marks, 1951.

G. Sallet and M. A. Da-silva, Monotone dynamical systems and some models of wolbachia in aedes aegypti populations, pp.20-145, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01320616

S. P. Sinkins, Wolbachia and cytoplasmic incompatibility in mosquitoes, Insect Biochemistry and Molecular Biology, vol.34, issue.7, pp.723-729, 2004.
DOI : 10.1016/j.ibmb.2004.03.025

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, 1995.
DOI : 10.1090/surv/041

M. Strugarek, N. Vauchelet, and J. Zubelli, Quantifying the survival uncertainty of <i>Wolbachia</i>-infected mosquitoes in a spatial model, Mathematical Biosciences & Engineering, vol.15, issue.4, pp.961-991, 2018.
DOI : 10.3934/mbe.2018043

T. Suzuki and F. Sone, Breeding habits of vector mosquitoes of filariasis and dengue fever in Western Samoa, Medical Entomology and Zoology, vol.29, issue.4, pp.279-286, 1978.
DOI : 10.7601/mez.29.279