Sharp seasonal threshold property for cooperative population dynamics with concave nonlinearities

Abstract : We consider a biological population whose environment varies periodically in time, exhibiting two very different " seasons " : one is favorable and the other one is unfavorable. For monotone differential models with concave nonlinearities, we address the following question: the system's period being fixed, under what conditions does there exist a critical duration for the unfavorable season? By " critical duration " we mean that above some threshold, the population cannot sustain and extincts, while below this threshold, the system converges to a unique periodic and positive solution. We term this a " sharp seasonal threshold property " (SSTP, for short). Building upon a previous result, we obtain sufficient conditions for SSTP in any dimension and apply our criterion to a two-dimensional model featuring juvenile and adult populations of insects.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01772628
Contributeur : Martin Strugarek <>
Soumis le : vendredi 20 avril 2018 - 15:40:00
Dernière modification le : mardi 9 octobre 2018 - 01:13:15
Document(s) archivé(s) le : mardi 18 septembre 2018 - 18:47:30

Fichiers

seaconsys.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01772628, version 1
  • ARXIV : 1804.07641

Citation

Martin Strugarek, Hongjun Ji. Sharp seasonal threshold property for cooperative population dynamics with concave nonlinearities. 2018. 〈hal-01772628〉

Partager

Métriques

Consultations de la notice

241

Téléchargements de fichiers

34