L. Hansen, R. Daoussi, C. Vervaet, J. Remon, D. Beer et al., Freeze-drying of live virus vaccines: A review, Vaccine, vol.33, issue.42, pp.5507-5519, 2015.
DOI : 10.1016/j.vaccine.2015.08.085

M. Pikal, Freeze-Drying of Proteins Formulation and Delivery of Proteins and Peptides, ACS Symposium Series, vol.1994, pp.120-133

S. Patel, F. Jameel, and M. Pikal, The Effect of Dryer Load on Freeze Drying Process Design, Journal of Pharmaceutical Sciences, vol.99, issue.10, pp.4363-4379, 2010.
DOI : 10.1002/jps.22132

S. Tchessalov, D. Dixon, and N. Warne, Principles of lyophilization cycle scale-up, Am Pharm Rev, vol.10, issue.2, pp.88-92, 2007.

T. Kramer, D. Kremer, M. Pikal, W. Petre, E. Shalaev et al., A procedure to optimize scale-up for the primary drying phase of lyophilization, Journal of Pharmaceutical Sciences, vol.98, issue.1, pp.307-318, 2009.
DOI : 10.1002/jps.21430

D. Fissore and A. Barresi, Scale-up and Process Transfer of Freeze-Drying Recipes, Drying Technology, vol.5, issue.14
DOI : 10.1081/DRT-200047671

S. Rambhatla and M. Pikal, Heat and mass transfer scale-up issues during freeze-drying, I: Atypical radiation and the edge vial effect, AAPS PharmSciTech, vol.4, issue.2, p.14, 2003.
DOI : 10.1208/pt040214

M. Pikal, R. Bogner, V. Mudhivarthi, P. Sharma, and P. Sane, Freeze-Drying Process Development and Scale-Up: Scale-Up of Edge Vial Versus Center Vial Heat Transfer Coefficients, K v, Journal of Pharmaceutical Sciences, vol.105, issue.11, pp.3333-3343, 2016.
DOI : 10.1016/j.xphs.2016.07.027

R. Pisano, D. Fissore, A. Barresi, P. Brayard, P. Chouvenc et al., Quality by design: optimization of a freeze-drying cycle via design space in case of heterogeneous drying behavior and influence of the freezing protocol Tang X, Nail SL, Pikal MJ. Evaluation of manometric temperature measurement, a process analytical technology tool for freeze-drying: Part I, product temperature measurement, Pharm Dev Technol AAPS PharmSciTech, vol.187, issue.101, pp.280-295, 2006.

K. Gan, R. Bruttini, O. Crosser, and A. Liapis, Freeze-drying of pharmaceuticals in vials on trays: effects of drying chamber wall temperature and tray side on lyophilization performance, International Journal of Heat and Mass Transfer, vol.48, issue.9, pp.1675-1687, 2005.
DOI : 10.1016/j.ijheatmasstransfer.2004.12.004

P. Sheehan and A. Liapis, Modeling of the primary and secondary drying stages of the freeze drying of pharmaceutical products in vials: Numerical results obtained from the solution of a dynamic and spatially multi-dimensional lyophilization model for different operational policies, Biotechnology and Bioengineering, vol.24, issue.6, pp.712-728, 1998.
DOI : 10.1016/0009-2509(69)85054-2

M. Pikal, Use of Laboratory Data in Freeze Drying Process Design: Heat and Mass Transfer Coefficients and the Computer Simulation of Freeze Drying, PDA Journal of Pharm Sci Technol, vol.39, issue.3, pp.115-139, 1985.

S. Hibler, C. Wagner, and H. Gieseler, Vial Freeze-Drying, part 1: New Insights into Heat Transfer Characteristics of Tubing and Molded Vials, Journal of Pharmaceutical Sciences, vol.101, issue.3, pp.1189-1201, 2012.
DOI : 10.1002/jps.23004

B. Scutella, S. Passot, E. Bourles, F. Fonseca, and I. Trelea, How Vial Geometry Variability Influences Heat Transfer and Product Temperature During Freeze-Drying, Journal of Pharmaceutical Sciences, vol.106, issue.3, pp.770-778, 2017.
DOI : 10.1016/j.xphs.2016.11.007

URL : https://hal.archives-ouvertes.fr/hal-01465155