Effect of freeze-dryer design on heat transfer variability investigated using a 3D mathematical model

Abstract : In the freeze-drying process, vials located at the border of the shelf usually present higher heat flow rates which in turn result in higher product temperatures than central vials. This phenomenon, named edge vial effect, can result in product quality variability within the same batch of vials and between batches at different scales. Our objective was to investigate the effect of various freeze-dryer design features on the heat transfer variability. A 3D mathematical model previously developed in COMSOL Multiphysics and experimentally validated was used to simulate heat transfer of a set of vials located at the edge and in the centre of the shelf. The design features considered were the loading configurations of the vials, the thermal characteristics of the rail, the walls and the shelves and some relevant dimensions of the drying chamber geometry. The presence of the rail in the loading configuration and the value of the shelf emissivity strongly impacted on the heat flow rates received by the vials. Conversely, the heat transfer was not significantly influenced by modifications of the thermal conductivity of the rail, the emissivity of the walls and by the geometry of the drying chamber. The developed model revealed to be a powerful tool to predict the heat transfer variability between edge and central vials for the cycle development and scale-up and to compare various freeze-dryer design features.
Complete list of metadatas

Cited literature [14 references]  Display  Hide  Download

https://hal-agroparistech.archives-ouvertes.fr/hal-01769104
Contributor : Ioan-Cristian Trelea <>
Submitted on : Tuesday, April 17, 2018 - 5:02:31 PM
Last modification on : Friday, March 29, 2019 - 5:43:22 PM

File

Postprint Scutella Bourles 201...
Files produced by the author(s)

Identifiers

Citation

B. Scutellà, E. Bourlés, A. Plana-Fattori, F. Fonseca, D. Flick, et al.. Effect of freeze-dryer design on heat transfer variability investigated using a 3D mathematical model. Journal of Pharmaceutical Sciences, Wiley, 2018, 107 (8), pp.2098-2106. ⟨10.1016/j.xphs.2018.04.002⟩. ⟨hal-01769104⟩

Share

Metrics

Record views

144

Files downloads

72