J. L. Peyraud, F. Vertès, L. Delaby, J. L. Fiorelli, and P. Durand, Bilans des flux d'azote au niveau des systèmes de production animale, Les flux d'azote liés aux élevages. Réduire les pertes, pp.295-331, 2012.

S. Portejoie, Volatilisation ammoniacale lors du stockage et à l'épandage de lisiers de porc: impact des apports protéiques, de l'utilisation de couvertures de fosse et d'additifs, Thèse de, p.137, 2002.

P. Robin, G. Amand, C. Aubert, N. Babela, and A. Brachet, Procédures de référence pour la mesure des émissions de polluants gazeux des bâtiments d'élevage et stockages d'effluents d'élevage. Rapport final, pp.74-92, 2010.

K. J. Donham, D. Cumro, and S. Reynolds, Synergistic Effects of Dust and Ammonia on the Occupational Health Effects of Poultry Production Workers, Journal of Agromedicine, vol.6, issue.2, pp.57-76, 2002.
DOI : 10.13031/2013.1909

M. D. Krom, Spectrophotometric determination of ammonia: a study of a modified Berthelot reaction using salicylate and dichloroisocyanurate, 10.1039/an9800500305 NF.EN.ISO.11732. 2005. Qualité de l'eau --Dosage de l'azote ammoniacal --Méthode par analyse en flux (CFA et FIA) et détection spectrométrique, pp.305-316, 1249.
DOI : 10.1039/an9800500305

N. En and . Iso, Qualité de l'eau -Dosage par chromatographie ionique, des ions Li+, 1999.

M. C. Mcbain, J. S. Warland, R. A. Mcbride, and C. Wagner-riddle, Micrometeorological measurements of N2O and CH4 emissions from a municipal solid waste landfill, Waste Management & Research, vol.13, issue.5, pp.409-419, 1177.
DOI : 10.1007/BF01868313

S. M. Mcginn, Developments in micrometeorological methods for methane measurements, animal, vol.52, issue.167, pp.386-393, 2013.
DOI : 10.1016/j.agrformet.2005.10.003

A. Pacholski, G. Cai, X. Fan, H. Ding, and D. Chen, Comparison of different methods for the measurement of ammonia volatilization after urea application in Henan Province, China, Journal of Plant Nutrition and Soil Science, vol.52, issue.3, pp.361-369, 2008.
DOI : 10.2136/sssaj1988.03615995005200030021x

J. Sintermann, A. Neftel, C. Ammann, C. Haeni, and A. Hensen, Are ammonia emissions from field-applied slurry substantially over-estimated in European emission inventories?, Biogeosciences, vol.95194, issue.5, pp.1611-1632, 1611.
DOI : 10.5194/bgd-8-10069-2011

URL : https://hal.archives-ouvertes.fr/hal-01019006

S. G. Sommer, S. M. Mcginn, X. Hao, and F. J. Larney, Techniques for measuring gas emissions from a composting stockpile of cattle manure, Atmospheric Environment, vol.38, issue.28, pp.4643-4652, 2004.
DOI : 10.1016/j.atmosenv.2004.05.014

S. G. Sommer, E. Sibbesen, T. Nielsen, J. K. Schjorring, and J. E. Olesen, A Passive Flux Sampler for Measuring Ammonia Volatilization from Manure Storage Facilities, Journal of Environment Quality, vol.25, issue.2, pp.241-247, 1996.
DOI : 10.2134/jeq1996.00472425002500020006x

J. D. Wilson and W. K. Shum, A reexamination of the integrated horizontal flux method for estimating volatilization from circular plots Agricultural and Forest Meteorology, pp.281-295, 1992.

M. R. Yague and A. D. Bosch-serra, Slurry field management and ammonia emissions under Mediterranean conditions. Soil Use and Management, pp.397-400, 2013.

S. R. Yates, J. Knuteson, F. F. Ernst, W. Zheng, and Q. Wang, Effect of Sequential Surface Irrigations on Field-Scale Emissions of 1,3-Dichloropropene, Environmental Science & Technology, vol.42, issue.23, pp.8753-8758, 1021.
DOI : 10.1021/es800675t

T. Gronholm, S. Haapanala, S. Launiainen, J. Rinne, and T. Vesala, The dependence of the ?? coefficient of REA system with dynamic deadband on atmospheric conditions, Environmental Pollution, vol.152, issue.3, pp.597-603, 2008.
DOI : 10.1016/j.envpol.2007.06.071

D. Haugen, Effects of sampling rates and averaging periods on meteorological measurements, Fourth Symposium on Meteorological Observations and Instrumentation, pp.15-18, 1978.

L. Hoertnagl, R. Clement, M. Graus, A. Hammerle, and A. Hansel, Dealing with disjunct concentration measurements in eddy covariance applications: A comparison of available approaches, Atmospheric Environment, issue.16, pp.44-2024, 2010.

T. G. Karl, C. Spirig, J. Rinne, C. Stroud, and P. Prevost, Virtual disjunct eddy covariance measurements of organic compound fluxes from a subalpine forest using proton transfer reaction mass spectrometry Atmospheric Chemistry and Physics, pp.279-291, 2002.

A. M. Obukhov, Structure of the temperature and velocity fields under conditions of free convection, Izv. Akad Nauk SSSR, vol.9, pp.1392-1396, 1960.

J. Rinne, T. Douffet, Y. Prigent, and P. Durand, Field comparison of disjunct and conventional eddy covariance techniques for trace gas flux measurements, Environmental Pollution, vol.152, issue.3, pp.630-635, 2008.
DOI : 10.1016/j.envpol.2007.06.063

J. Ruppert, C. Thomas, and T. Foken, Scalar similarity for relaxed eddy accumulation methods. Boundary-Layer Meteorology, pp.39-63, 2006.
DOI : 10.1007/s10546-005-9043-3

A. A. Turnipseed, S. N. Pressley, T. Karl, B. Lamb, and E. Nemitz, The use of disjunct eddy sampling methods for the determination of ecosystem level fluxes of trace gases, Atmospheric Chemistry and Physics, vol.9, issue.3, pp.981-994, 2009.
DOI : 10.5194/acp-9-981-2009

J. C. Wyngaard and O. R. Coté, The Budgets of Turbulent Kinetic Energy and Temperature Variance in the Atmospheric Surface Layer, Journal of the Atmospheric Sciences, vol.28, issue.2, 1971.
DOI : 10.1175/1520-0469(1971)028<0190:TBOTKE>2.0.CO;2

J. C. Wyngaard, O. R. Coté, and Y. Izumi, Local Free Convection, Similarity, and the Budgets of Shear Stress and Heat Flux, Journal of the Atmospheric Sciences, vol.28, issue.7, 1971.
DOI : 10.1175/1520-0469(1971)028<1171:LFCSAT>2.0.CO;2

. Eduscol, Mesure et incertitudes Ministère de l'éducation nationale, de la jeunesse et de la vie associative 38 p. Téléchargeable sur le lien http, 2012.

M. Carlo, Téléchargeable sur ce lien http://www.bipm.org/fr/publications/guides/gum.html consulté le 19, 2014.

V. R. Phillips, D. S. Lee, R. Scholtens, J. A. Garland, and R. W. Sneath, SE???Structures and Environment, Journal of Agricultural Engineering Research, vol.78, issue.1, pp.1-140618, 2000.
DOI : 10.1006/jaer.2000.0618

M. Eugene, C. Martin, M. M. Mialon, D. Krauss, and G. Renand, Dietary linseed and starch supplementation decreases methane production of fattening bulls. Animal Feed Science and Technology, pp.166-67, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01193867

M. Eugene, D. Masse, J. Chiquette, and C. Benchaar, Meta-analysis on the effects of lipid supplementation on methane production in lactating dairy cows, Canadian Journal of Animal Science, vol.88, issue.2, pp.331-334, 2008.
DOI : 10.4141/CJAS07112

C. Martin, D. Pomiès, A. Ferlay, Y. Rochette, and B. Martin, Methane output and rumen microbiota in dairy cows in response to long-term supplementation with linseed or rapeseed of grass silage-or pasture-based diets, Proceedings of the New Zealand Society of Animal Production, pp.243-247, 2011.

C. Martin, J. Rouel, J. P. Jouany, M. Doreau, and Y. Chilliard, Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil, Journal of Animal Science, vol.86, issue.10, pp.2642-2650, 2008.
DOI : 10.2527/jas.2007-0774

D. Sauvant and S. Giger-reverdin, Modelling of digestive interactions and methane production in ruminants, INRA Productions Animales, vol.22, issue.5, pp.375-384, 2009.

D. Sauvant, S. Giger-reverdin, A. Serment, and L. Broudiscou, Influences of diet and rumen fermentation on methane production by ruminants, INRA Productions Animales, vol.24155, issue.5, pp.433-446, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01561700

N. Edouard, A. Charpiot, M. Hassouna, P. Faverdin, and P. Robin, Ammonia and greenhouse gas emissions form dairy cattle buildings: slurry vs. farmyard manure management systems, Emissions of gas and dust from livestock. International symposium on EMIssion of gas and dust from LIvestock Editions IFIP-Institut du Porc pp, pp.122-125, 2012.

M. Hassouna, P. Robin, A. Brachet, J. M. Paillat, and J. B. Dollé, Development and validation of a simplified method to quantity gaseous emissions from cattle buildings, XVIIth World Concress of the International Commission of Agricultural Engineering, pp.1-10, 2010.

M. Hassouna, P. Robin, A. Charpiot, N. Edouard, and B. Méda, Infrared photoacoustic spectroscopy in animal houses: Effect of non-compensated interferences on ammonia, nitrous oxide and methane air concentrations, Biosystems Engineering, vol.114, issue.3, pp.318-326, 2013.
DOI : 10.1016/j.biosystemseng.2012.12.011

URL : https://hal.archives-ouvertes.fr/hal-01209134

S. Cependant and . La-représentativité-spatiale-et-temporelle-des-mesures, des sources d'incertitudes subsistent notamment dans la mesure des conditions du sol En effet, compte-tenu des contraintes du dispositif expérimental, la station météorologique mesurant les conditions de température et d'humidité du sol était placée à environ 150 mètres du parcours. Par ailleurs, une valeur unique de température et d'humidité du sol a été utilisée dans le traitement des données (développement d'équations mécanistes reliant conditions du sol et flux de gaz) alors que la variabilité des conditions du sol était probablement forte en raison de la pente (sol plus humide en bas de la pente, à proximité du bâtiment) et de l'hétérogénéité du couvert végétal (gradient de végétation croissant en s'éloignant du bâtiment). Enfin, les équations mécanistes développées dans notre étude tenaient uniquement

. Méda, O (< 5 kg N-N 2 O.ha -1 .an -1 ) ce qui représente une très faible part du N excrété sur le parcours (< 1%) mais reste du même ordre de grandeur que les émissions en bâtiment Il est probable qu'une grande partie du N excrété sur le parcours ait été volatilisé sous forme de NH 3 , mais cette hypothèse nécessiterait d'estimer les flux de NH 3 liés au parcours à l'aide de méthodes plus adaptées que la méthode des chambres statiques, comme la méthode micro-météorologique COTAG (Fiche 29). Enfin, 2013.

D. Klein, C. Novoa, R. S. Ogle, S. Smith, K. A. Rochette et al., N2O emissions from managed soils, and CO2 emissions from lime and urea application. Chap. 11, IPCC Guidelines for National Greenhouse Gas Inventories, 2006.

B. Méda, Une approche dynamique des flux d'éléments et d'énergie des ateliers de production avicole avec ou sans parcours: conception et application du modèle MOLDAVI. INRA-Agrocampus Ouest, Agocampus Ouest Rennes, 2011.

B. Méda, C. Flechard, K. Germain, C. Walter, and P. Robin, Greenhouse gas budget of an organic broiler production system in France. Emission factors, Emissions of gas and dust from livestock. Editions IFIP -Institut du Porc pp, pp.73-76, 2013.

B. Méda, C. R. Flechard, K. Germain, P. Robin, and C. Walter, Greenhouse gas emissions from the grassy outdoor run of organic broilers, Biogeosciences, vol.9, issue.4, pp.1493-1508, 2012.
DOI : 10.5194/bg-9-1493-2012-supplement

B. Méda, M. Hassouna, C. Aubert, P. Robin, J. Y. Dourmad et al., Influence of rearing conditions and manure management practices on ammonia and greenhouse gas emissions from poultry houses. Worlds Poultry Science Journal The measurement of nitrous-oxide emissions from soil by using chambers, Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, vol.67, issue.3, pp.441-455, 1098.

H. Steinfeld, P. Gerber, T. Wassenaar, V. Castel, and M. Rosales, Livestock's long shadow -environmental issues and options, Food & Agriculture Organization of the United Nations (FAO) 414 p, 2006.

C. R. Flechard and D. Fowler, Atmospheric ammonia at a moorland site. II: Long-term surface-atmosphere micrometeorological flux measurements, Quarterly Journal of the Royal Meteorological Society, vol.27, issue.547, pp.759-791, 1998.
DOI : 10.1016/0960-1686(93)90280-C

B. Loubet, S. Génermont, R. Ferrara, C. Bedos, C. Decuq et al., An inverse model to estimate ammonia emissions from fields, European Journal of Soil Science, vol.34, issue.5, pp.793-805, 2010.
DOI : 10.1175/1520-0469(1959)016<0535:TTOLAI>2.0.CO;2

URL : https://hal.archives-ouvertes.fr/hal-01192231

B. Loubet, S. Génermont, E. Personne, and R. S. Massad, Can we estimate ammonia emissions by inverse modelling with time averaged concentrations? Nitrogen and Global Change. Key findings and future challenges? Conference, pp.11-14, 2011.

. Loubet, 2012 A new method for estimating ammonia volatilization from slurry in small fields using diffusion samplers. International symposium on EMIssion of gas and dust from Livestock, Saint Malo, Proceedings, vol.1, pp.325-328, 2012.

S. G. Sommer and N. J. Hutchings, Ammonia emission from field applied manure and its reduction???invited paper, European Journal of Agronomy, vol.15, issue.1, pp.1-15, 2001.
DOI : 10.1016/S1161-0301(01)00112-5

M. A. Sutton, Y. S. Tang, B. Miners, and D. Fowler, A New Diffusion Denuder System for Long-Term, Regional Monitoring of Atmospheric Ammonia and Ammonium, Water Air and Soil Pollution: Focus, issue.1, pp.145-156, 2001.
DOI : 10.1007/978-94-010-9026-1_15