Chapter 2 - Bioenergy - AgroParisTech Accéder directement au contenu
Chapitre D'ouvrage Année : 2012

Chapter 2 - Bioenergy

Helena Chum
  • Fonction : Auteur
Andre Faaj
  • Fonction : Auteur
Jose Moreira
  • Fonction : Auteur
Göran Berndes
  • Fonction : Auteur
Dhamija Parveen
  • Fonction : Auteur
Benoit Gabrielle
Alison Goss Eng
  • Fonction : Auteur
Wolfgang Lucht
  • Fonction : Auteur
Maxwell Mapako
  • Fonction : Auteur
Omar Masera Cerutti
  • Fonction : Auteur
Terry Mcintyre
  • Fonction : Auteur
Tomoaki Minowa
  • Fonction : Auteur
Kim Pingoud
  • Fonction : Auteur
Richard Bain
  • Fonction : Auteur
Ranyee Chiang
  • Fonction : Auteur
David Dawe
  • Fonction : Auteur
Garvin Heath
  • Fonction : Auteur
Martin Junginger
  • Fonction : Auteur
Martin Patel
  • Fonction : Auteur
Joyce Yang
  • Fonction : Auteur
Ethan Warner
  • Fonction : Auteur
David Paré
  • Fonction : Auteur
Suzana Kahn Ribeiro
  • Fonction : Auteur

Résumé

Bioenergy has a significant greenhouse gas (GHG) mitigation potential, provided that the resources are developed sustainably and that efficient bioenergy systems are used. Certain current systems and key future options including perennial cropping systems, use of biomass residues and wastes and advanced conversion systems are able to deliver 80 to 90% emission reductions compared to the fossil energy baseline. However, land use conversion and forest management that lead to a loss of carbon stocks (direct) in addition to indirect land use change (d+iLUC) effects can lessen, and in some cases more than neutralize, the net positive GHG mitigation impacts. Impacts of climate change through temperature increases, rainfall pattern changes and increased frequency of extreme events will influence and interact with biomass resource potential. This interaction is still poorly understood, but it is likely to exhibit strong regional differences. Climate change impacts on biomass feedstock production exist but if global temperature rise is limited to less than 2°C compared with the pre-industrial record, it may pose few constraints. Combining adaptation measures with biomass resource production can offer more sustainable opportunities for bioenergy and perennial cropping systems. Biomass is a primary source of food, fodder and fibre and as a renewable energy (RE) source provided about 10.2% (50.3 EJ) of global total primary energy supply (TPES) in 2008. Traditional use of wood, straws, charcoal, dung and other manures for cooking, space heating and lighting by generally poorer populations in developing countries accounts for about 30.7 EJ, and another 20 to 40% occurs in unaccounted informal sectors including charcoal production and distribution.
Fichier non déposé

Dates et versions

hal-01590366 , version 1 (19-09-2017)

Identifiants

Citer

Helena Chum, Andre Faaj, Jose Moreira, Göran Berndes, Dhamija Parveen, et al.. Chapter 2 - Bioenergy. Ottmar Edenhofer; et al. Renewable Energy Sources and Climate Change Mitigation, Cambridge University Press, pp.209-332, 2012, ⟨10.1017/CBO9781139151153.006⟩. ⟨hal-01590366⟩
727 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More