F. Karlsson, V. Tremaroli, I. Nookaew, G. Bergström, C. Behre et al., Gut metagenome in European women with normal, impaired and diabetic glucose control, Nature, vol.35, issue.7452, pp.99-103, 2013.
DOI : 10.1111/j.1574-6976.2010.00251.x

M. Dumas, Metabolome 2.0: quantitative genetics and network biology of metabolic phenotypes, Molecular BioSystems, vol.8, issue.10, pp.2494-502, 2012.
DOI : 10.1039/c2mb25049g

A. Dimas, V. Lagou, A. Barker, J. Knowles, R. Mägi et al., Impact of Type 2 Diabetes Susceptibility Variants on Quantitative Glycemic Traits Reveals Mechanistic Heterogeneity, Diabetes, vol.63, issue.6, pp.2158-71, 2014.
DOI : 10.2337/db13-0949

P. Yancey, M. Clark, S. Hand, R. Bowlus, and G. Somero, Living with water stress: evolution of osmolyte systems, Science, vol.217, issue.4566, pp.1214-1236, 1982.
DOI : 10.1126/science.7112124

T. Manolio, F. Collins, N. Cox, D. Goldstein, L. Hindorff et al., Finding the missing heritability of complex diseases, Nature, vol.41, issue.7265, pp.747-53, 2009.
DOI : 10.1016/j.tig.2007.12.007

U. Ozcan, E. Yilmaz, L. Ozcan, M. Furuhashi, E. Vaillancourt et al., Chemical Chaperones Reduce ER Stress and Restore Glucose Homeostasis in a Mouse Model of Type 2 Diabetes, Science, vol.313, issue.5790, pp.1137-1177, 2006.
DOI : 10.1126/science.1128294

A. Bandyopadhyay, K. Saxena, N. Kasturia, V. Dalal, N. Bhatt et al., Chemical chaperones assist intracellular folding to buffer mutational variations, Nature Chemical Biology, vol.170, issue.3, pp.238-283, 2012.
DOI : 10.1006/jmbi.1998.2395

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3527004

J. Ma, I. Pazos, and F. Gai, Microscopic insights into the protein-stabilizing effect of trimethylamine N-oxide (TMAO), Proceedings of the National Academy of Sciences, vol.134, issue.15, pp.8476-81, 2014.
DOI : 10.1063/1.3580776

D. Gauguier, P. Froguel, V. Parent, C. Bernard, M. Bihoreau et al., Chromosomal mapping of genetic loci associated with non-insulin dependent diabetes in the GK rat, Nature Genetics, vol.51, issue.1, pp.38-43, 1996.
DOI : 10.1038/ng0196-38

URL : https://hal.archives-ouvertes.fr/hal-00399332

D. Tripathy and A. Chavez, Defects in Insulin Secretion and Action in the Pathogenesis of Type 2 Diabetes Mellitus, Current Diabetes Reports, vol.42, issue.Suppl 2, pp.184-91, 2010.
DOI : 10.1172/JCI39721

R. Wallis, S. Collins, P. Kaisaki, K. Argoud, S. Wilder et al., Pathophysiological, Genetic and Gene Expression Features of a Novel Rodent Model of the Cardio-Metabolic Syndrome, PLoS ONE, vol.21, issue.8, p.2962, 2008.
DOI : 10.1371/journal.pone.0002962.s002

D. Shungin, T. Winkler, D. Croteau-chonka, T. Ferreira, A. Locke et al., New genetic loci link adipose and insulin biology to body fat distribution, Nature, vol.9, issue.7538, pp.187-96, 2015.
DOI : 10.1038/nmeth.2212

URL : https://hal.archives-ouvertes.fr/hal-01132692

V. Ridaura, J. Faith, F. Rey, J. Cheng, A. Duncan et al., Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice, Science, vol.59, issue.12, p.1241214, 2013.
DOI : 10.2337/db10-0253

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3829625

M. Heinig, E. Petretto, C. Wallace, L. Bottolo, M. Rotival et al., A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk, Nature, vol.447, issue.7314, pp.460-464, 2010.
DOI : 10.1038/nature09386

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657719

M. Akerfeldt, J. Howes, J. Chan, V. Stevens, N. Boubenna et al., Cytokine-Induced ??-Cell Death Is Independent of Endoplasmic Reticulum Stress Signaling, Diabetes, vol.57, issue.11, pp.3034-3078, 2008.
DOI : 10.2337/db07-1802

H. Lees, J. Swann, S. Poucher, J. Nicholson, E. Holmes et al., Age and Microenvironment Outweigh Genetic Influence on the Zucker Rat Microbiome, PLoS ONE, vol.18, issue.5, p.100916, 2014.
DOI : 10.1371/journal.pone.0100916.s022

URL : http://doi.org/10.1371/journal.pone.0100916

M. Dumas, S. Wilder, M. Bihoreau, R. Barton, J. Fearnside et al., Direct quantitative trait locus mapping of mammalian metabolic phenotypes in diabetic and normoglycemic rat models, Nature Genetics, vol.75, issue.5, pp.666-72, 2007.
DOI : 10.1042/bj1180047

J. Nicholson, P. Foxall, M. Spraul, R. Farrant, and J. Lindon, 750 MHz 1H and 1H-13C NMR Spectroscopy of Human Blood Plasma, Analytical Chemistry, vol.67, issue.5, pp.793-811, 1995.
DOI : 10.1021/ac00101a004

C. Gavaghan, E. Holmes, E. Lenz, I. Wilson, and J. Nicholson, An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: application to the C57BL10J and Alpk:ApfCD mouse, FEBS Letters, vol.32, issue.3, pp.169-74, 2000.
DOI : 10.2329/perio.32.Supplement1_117

B. Blaise, J. Giacomotto, E. B. Dumas, M. Toulhoat, P. Ségalat et al., Metabotyping of Caenorhabditis elegans reveals latent phenotypes, Proceedings of the National Academy of Sciences, vol.16, issue.1, pp.19808-19820, 2007.
DOI : 10.1002/cem.695

URL : https://hal.archives-ouvertes.fr/hal-00294039

P. Elliott, J. Posma, Q. Chan, I. Garcia-perez, A. Wijeyesekera et al., Urinary metabolic signatures of human adiposity, Science Translational Medicine, vol.308, issue.5728, pp.285-62, 2015.
DOI : 10.1126/science.1110591

T. Wang, M. Larson, R. Vasan, S. Cheng, E. Rhee et al., Metabolite profiles and the risk of developing diabetes, Nature Medicine, vol.110, issue.4, pp.448-53, 2011.
DOI : 10.1007/BF00280883

I. Huang-doran, L. Bicknell, F. Finucane, N. Rocha, K. Porter et al., Genetic Defects in Human Pericentrin Are Associated With Severe Insulin Resistance and Diabetes, Diabetes, vol.60, issue.3, pp.925-960, 2011.
DOI : 10.2337/db10-1334

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046854

G. Tiller, H. Laumen, P. Fischer-posovszky, A. Finck, T. Skurk et al., LIGHT (TNFSF14) inhibits adipose differentiation without affecting adipocyte metabolism, International Journal of Obesity, vol.155, issue.2, pp.208-224, 2011.
DOI : 10.1016/j.febslet.2008.09.012

URL : http://www.nature.com/ijo/journal/v35/n2/pdf/ijo2010126a.pdf

J. Cazier, P. Kaisaki, K. Argoud, B. Blaise, K. Veselkov et al., Untargeted Metabolome Quantitative Trait Locus Mapping Associates Variation in Urine Glycerate to Mutant Glycerate Kinase, Journal of Proteome Research, vol.11, issue.2, pp.631-673, 2012.
DOI : 10.1021/pr200566t

URL : https://hal.archives-ouvertes.fr/hal-00699625

D. Song, L. Getty-kaushik, E. Tseng, J. Simon, B. Corkey et al., Glucose-Dependent Insulinotropic Polypeptide Enhances Adipocyte Development and Glucose Uptake in Part Through Akt Activation, Gastroenterology, vol.133, issue.6, pp.1796-805, 2007.
DOI : 10.1053/j.gastro.2007.09.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2185546

L. Hedjazi, D. Gauguier, P. Zalloua, J. Nicholson, M. Dumas et al., H NMR-Based Metabolic Profiles, Analytical Chemistry, vol.87, issue.8, pp.4377-84, 2015.
DOI : 10.1021/acs.analchem.5b00145

D. Buchner and J. Nadeau, Contrasting genetic architectures in different mouse reference populations used for studying complex traits, Genome Research, vol.25, issue.6, pp.775-91, 2015.
DOI : 10.1101/gr.187450.114

URL : http://genome.cshlp.org/content/25/6/775.full.pdf

S. Shin, E. Fauman, A. Petersen, J. Krumsiek, R. Santos et al., An atlas of genetic influences on human blood metabolites, Nature Genetics, vol.32, issue.6, pp.543-50, 2014.
DOI : 10.1093/ije/dyg070

J. Kettunen, T. Tukiainen, A. Sarin, A. Ortega-alonso, E. Tikkanen et al., Genome-wide association study identifies multiple loci influencing human serum metabolite levels, Nature Genetics, vol.115, issue.3, pp.269-76, 2012.
DOI : 10.1093/bioinformatics/btm443

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605033

G. Nicholson, M. Rantalainen, J. Li, A. Maher, D. Malmodin et al., A Genome-Wide Metabolic QTL Analysis in Europeans Implicates Two Loci Shaped by Recent Positive Selection, PLoS Genetics, vol.1, issue.9, p.1002270, 2011.
DOI : 10.1371/journal.pgen.1002270.s010

T. Illig, C. Gieger, G. Zhai, W. Römisch-margl, R. Wang-sattler et al., A genome-wide perspective of genetic variation in human metabolism, Nature Genetics, vol.78, issue.2, pp.137-178, 2010.
DOI : 10.1038/ng.507

K. Suhre, H. Wallaschofski, J. Raffler, N. Friedrich, R. Haring et al., A genome-wide association study of metabolic traits in human urine, Nature Genetics, vol.244, issue.6, pp.565-574, 2011.
DOI : 10.1086/519795

R. Sopko, D. Huang, N. Preston, G. Chua, B. Papp et al., Mapping Pathways and Phenotypes by Systematic Gene Overexpression, Molecular Cell, vol.21, issue.3, pp.319-349, 2006.
DOI : 10.1016/j.molcel.2005.12.011

URL : http://doi.org/10.1016/j.molcel.2005.12.011

G. Consortium, The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans, Science, vol.55, issue.4, pp.648-60, 2015.
DOI : 10.1016/j.biopsych.2003.10.013

D. Heimark, J. Mcallister, and J. Larner, Decreased myo-inositol to chiro-inositol (M/C) ratios and increased M/C epimerase activity in PCOS theca cells demonstrate increased insulin sensitivity compared to controls, Endocrine Journal, vol.61, issue.2, pp.111-118, 2014.
DOI : 10.1507/endocrj.EJ13-0423

Y. Pak, Y. Hong, S. Kim, T. Piccariello, R. Farese et al., In vivo chiro-inositol metabolism in the rat: a defect in chiro-inositol synthesis from myo-inositol and an increased incorporation of chiro-[3H]inositol into phospholipid in the Goto-Kakizaki (G.K) rat, Mol Cells, vol.8, pp.301-310, 1998.

A. Ghazalpour, B. Bennett, D. Shih, C. N. Orozco, L. Pan et al., Genetic regulation of mouse liver metabolite levels, Molecular Systems Biology, vol.10, issue.5, p.730, 2014.
DOI : 10.15252/msb.20135004

L. Davidovic, V. Navratil, C. Bonaccorso, M. Catania, B. Bardoni et al., A metabolomic and systems biology perspective on the brain of the Fragile X syndrome mouse model, Genome Research, vol.21, issue.12, pp.2190-202, 2011.
DOI : 10.1101/gr.116764.110

URL : https://hal.archives-ouvertes.fr/hal-00724490

M. Croze, R. Vella, N. Pillon, H. Soula, L. Hadji et al., Chronic treatment with myo-inositol reduces white adipose tissue accretion and improves insulin sensitivity in female mice, The Journal of Nutritional Biochemistry, vol.24, issue.2, pp.457-66, 2013.
DOI : 10.1016/j.jnutbio.2012.01.008

URL : https://hal.archives-ouvertes.fr/hal-00759518

S. Marshall, V. Bacote, and R. Traxinger, Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance, J Biol Chem, vol.266, pp.4706-4718, 1991.

N. Begum and L. Ragolia, Altered regulation of insulin signaling components in adipocytes of insulin-resistant type II diabetic goto-kakizaki rats, Metabolism, vol.47, issue.1, pp.54-62, 1998.
DOI : 10.1016/S0026-0495(98)90193-7

J. Zhu, P. Sova, Q. Xu, K. Dombek, E. Xu et al., Stitching together Multiple Data Dimensions Reveals Interacting Metabolomic and Transcriptomic Networks That Modulate Cell Regulation, PLoS Biology, vol.103, issue.4, p.1001301, 2012.
DOI : 10.1371/journal.pbio.1001301.s025

URL : http://doi.org/10.1371/journal.pbio.1001301

C. Ferrara, P. Wang, E. Neto, R. Stevens, J. Bain et al., Genetic Networks of Liver Metabolism Revealed by Integration of Metabolic and Transcriptional Profiling, PLoS Genetics, vol.7, issue.3, p.1000034, 2008.
DOI : 10.1371/journal.pgen.1000034.s006

K. Argoud, S. Wilder, M. Mcateer, M. Bihoreau, F. Ouali et al., Genetic control of plasma lipid levels in a cross derived from normoglycaemic

J. Posma, S. Robinette, E. Holmes, and J. Nicholson, MetaboNetworks, an interactive Matlab-based toolbox for creating, customizing and exploring sub-networks from KEGG, Bioinformatics, vol.30, issue.6, pp.893-898, 2014.
DOI : 10.1093/bioinformatics/btt612

URL : https://academic.oup.com/bioinformatics/article-pdf/30/6/893/17345254/btt612.pdf

S. Collins, R. Wallis, K. Wallace, M. Bihoreau, and D. Gauguier, Marker-assisted congenic screening ( MACS ): A database tool for the efficient production and characterization of congenic lines, Mammalian Genome, vol.14, issue.5, pp.350-356, 2003.
DOI : 10.1007/s00335-002-3058-6

A. Kamburov, R. Cavill, T. Ebbels, R. Herwig, and H. Keun, Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA, Bioinformatics, vol.27, issue.20, pp.2917-2925, 2011.
DOI : 10.1093/bioinformatics/btr499

W. Bryant, M. Sternberg, and J. Pinney, AMBIENT: Active Modules for Bipartite Networks - using high-throughput transcriptomic data to dissect metabolic response, BMC Systems Biology, vol.7, issue.1, p.26, 2013.
DOI : 10.1007/BF01908075

URL : https://bmcsystbiol.biomedcentral.com/track/pdf/10.1186/1752-0509-7-26?site=bmcsystbiol.biomedcentral.com

Y. Goto, M. Kakizaki, and N. Masaki, Production of Spontaneous Diabetic Rats by Repetition of Selective Breeding, The Tohoku Journal of Experimental Medicine, vol.119, issue.1, pp.85-90, 1976.
DOI : 10.1620/tjem.119.85

S. Collins, R. Wallis, S. Wilder, K. Wallace, K. Argoud et al., Mapping diabetes QTL in an intercross derived from a congenic strain of the Brown Norway and Goto-Kakizaki rats, Mammalian Genome, vol.14, issue.6, pp.538-585, 2006.
DOI : 10.1007/s00335-005-0168-y

R. Wallis, K. Wallace, S. Collins, M. Mcateer, K. Argoud et al., Enhanced insulin secretion and cholesterol metabolism in congenic strains of the spontaneously diabetic (Type 2) Goto Kakizaki rat are controlled by independent genetic loci in rat chromosome 8, Diabetologia, vol.47, issue.6, pp.1096-106, 2004.
DOI : 10.1007/s00125-004-1416-5

K. Wallace, R. Wallis, S. Collins, K. Argoud, P. Kaisaki et al., Quantitative trait locus dissection in congenic strains of the Goto-Kakizaki rat identifies a region conserved with diabetes loci in human chromosome 1q, Physiological Genomics, vol.19, issue.1, pp.1-10, 2004.
DOI : 10.1152/physiolgenomics.00114.2004

URL : https://hal.archives-ouvertes.fr/hal-00091557

S. Atanur, A. Diaz, K. Maratou, A. Sarkis, M. Rotival et al., Genome Sequencing Reveals Loci under Artificial Selection that Underlie Disease Phenotypes in the Laboratory Rat, Cell, vol.154, issue.3, pp.691-703, 2013.
DOI : 10.1016/j.cell.2013.06.040

E. Marion, P. Kaisaki, V. Pouillon, C. Gueydan, J. Levy et al., The Gene INPPL1, Encoding the Lipid Phosphatase SHIP2, Is a Candidate for Type 2 Diabetes In Rat and Man, Diabetes, vol.51, issue.7, pp.2012-2019, 2002.
DOI : 10.2337/diabetes.51.7.2012

O. Cloarec, M. Dumas, J. Trygg, A. Craig, R. Barton et al., H NMR Spectroscopic Metabonomic Studies, Analytical Chemistry, vol.77, issue.2, pp.517-543, 2005.
DOI : 10.1021/ac048803i

J. Zhang and S. Wiemann, KEGGgraph: a graph approach to KEGG PATHWAY in R and bioconductor, Bioinformatics, vol.25, issue.11, pp.1470-1471, 2009.
DOI : 10.1093/bioinformatics/btp167

M. Civelek and A. Lusis, Systems genetics approaches to understand complex traits, Nature Reviews Genetics, vol.45, issue.1, pp.34-48, 2014.
DOI : 10.2337/db11-1378

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3934510