F. Austerlitz and P. E. Smouse, Two-generation analysis of pollen flow across a landscape. iv. estimating the dispersal parameter, Genetics, p.355, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00525772

F. Austerlitz, C. W. Dick, C. Dutech, E. K. Klein, S. Oddou-muratorio et al., Using genetic markers to estimate the pollen dispersal curve, Mol. Ecol, vol.13, pp.937-954, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00531068

C. P. Barnes, S. Filippi, M. P. Stumpf, and T. Thorne, Considerate approaches to constructing summary statistics for ABC model selection, Stat. Comput, vol.22, pp.1181-1197, 2012.

M. A. Beaumont, Approximate bayesian computation in evolution and ecology, Annu. Rev. Ecol. Evol. Syst, vol.41, pp.379-406, 2010.

M. A. Beaumont, W. Zhang, and D. J. Balding, Approximate bayesian computation in population genetics, Genetics, vol.162, pp.2025-2035, 2002.

M. A. Beaumont, J. Cornuet, J. Marin, and C. Robert, Adaptivity for ABC algorithms: the ABC-PMC scheme, Biometrika, vol.96, pp.983-990, 2009.

M. G. Blum, Approximate bayesian computation: a nonparametric perspective, J. Am. Stat. Assoc, vol.205, pp.1178-1187, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00373301

M. G. Blum, Choosing the summary statistics and the acceptance rate in approximate bayesian computation, Proceedings of COMPSTAT'2010, pp.47-56, 2010.

M. G. Blum and O. François, Non-linear regression models for approximate bayesian computation, Stat. Comput, vol.20, pp.63-73, 2010.

M. G. Blum, M. A. Nunes, D. Prangle, and S. A. Sisson, A comparative review of dimension reduction methods in approximate bayesian computation, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00861839

F. Carpentier, Modélisations de la dispersion du pollen et estimation à partir de marqueurs génétiques, 2010.

J. Chilés and P. Delfiner, Geostatistics. Modeling Spatial Uncertainty, 1999.

N. A. Cressie, Statistics for Spatial Data, 1991.

K. Csilléry, M. G. Blum, O. E. Gaggiotti, and O. François, Approximate bayesian computation (ABC) in practice, Trends Ecol. Evol, vol.25, pp.410-418, 2010.

K. Csilléry, O. François, and M. Blum, Abc: an R package for Approximate Bayesian Computation (ABC), 2011.

P. Fearnhead and D. Prangle, Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation, J. R. Stat. Soc. B, vol.74, pp.419-474, 2012.

H. Haario, E. Saksman, and J. Tamminen, Bereitgestellt von | De Gruyter / TCS Angemeldet | 212, Bernoulli, vol.7, p.97, 2001.

E. Haon-lasportes, F. Carpentier, O. Martin, E. K. Klein, and S. Soubeyrand, Conditioning on parameter point estimates in approximate bayesian computation. Research Report. INRA, Biostatistics and Spatial Processes Research Unit, 2011.

O. J. Hardy, Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers, Mol. Ecol, vol.12, pp.1577-1588, 2003.

J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan, Statistical Analysis and Modelling of Spatial PointPatterns, 2008.

P. Joyce and P. Marjoram, Approximately sufficient statistics and bayesian computation, Stat. Appl. Genet. Mol. Biol, vol.7, pp.1-16, 2008.

H. Jung and P. Marjoram, Choice of summary statistic weights in approximate bayesian computation, Stat. Appl. Genet. Mol. Biol, vol.10, pp.1-23, 2011.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing, Science, vol.220, pp.671-680, 1983.

C. Leuenberger and D. Wegmann, Bayesian computation and model selection without likelihoods, Genetics, vol.184, pp.243-252, 2010.

J. M. Marin, P. Pudlo, C. P. Robert, and R. Ryder, Approximate bayesian computational methods, J. Stat. Comput, vol.22, pp.1167-1180, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00567240

P. Marjoram, V. Plagnol, S. Tavaré, C. Mcculloch, and S. R. Searle, Markov chain Monte Carlo without likelihoods, Linear, and Mixed Models, vol.100, pp.15324-15328, 2001.

J. A. Nelder and R. Mead, A simplex method for function minimization, Comput. J, vol.7, pp.308-313, 1965.

M. A. Nunes and D. J. Balding, On optimal selection of summary statistics for approximate bayesian computation, Stat. Appl. Genet. Mol. Biol, vol.9, pp.1-14, 2010.

S. Oddou-muratorio, E. K. Klein, and F. Austerlitz, Pollen flow in the wildservice tree, sorbus torminalis (L.) Crantz. II. Pollen dispersal and heterogeneity in mating success inferred from parent-offspring analysis, Mol. Ecol, vol.14, pp.4441-4452, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00531064

J. K. Pritchard, M. T. Seielstad, A. Perez-lezaun, and M. W. Feldman, Population growth oh human y chromosomes: a study of y chromosome mibrosatellites, Mol. Biol. Evol, vol.16, pp.1791-1798, 1999.

J. J. Robledo-arnuncio and F. Austerlitz, Pollen dispersal in spatially aggregated populations, The American Naturalist, vol.168, pp.500-511, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00531084

J. J. Robledo-arnuncio, F. Austerlitz, and P. E. Smouse, A new method of estimating the pollen dispersal curve independently of effective density, Genetics, vol.173, pp.1033-1045, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00531083

V. K. Rohatgi, Statistical Inference, 2003.

F. Rousset, Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance, Genetics, vol.145, p.1219, 1997.

F. Rousset, Genetic differentiation between individuals, J. Evol. Biol, vol.13, pp.58-62, 2000.

F. Rousset and R. Leblois, Likelihood and approximate likelihood analyses of genetic structure in a linear habitat: performance and robustness to model mis-specification, Mol. Biol. Evol, vol.24, pp.2730-2745, 2007.
URL : https://hal.archives-ouvertes.fr/halsde-00321541

D. B. Rubin, Bayesianly justifiable and relevant frequency calculations for the applied statistician, Ann. Stat, vol.12, pp.1151-1172, 1984.

D. Ruppert, M. P. Wand, and R. J. Carroll, Semiparametric Regression, 2003.

P. E. Smouse, R. J. Dyer, R. D. Westfall, and V. L. Sork, Two-generation analysis of pollen flow across a landscape .i. malegamete heterogeneity among females, Evolution, vol.55, pp.260-271, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00525772

D. Stoyan and H. Stoyan, Fractals, Random Shapes and Pointfields: Methods of Geometrical Statistics, 1994.

D. Wegmann, C. Leuenberger, and L. Excoffier, Efficient Approximate Bayesian Computation coupled with Markov chain Monte Carlo without likelihood, Genetics, vol.182, pp.1207-1218, 2009.

D. Wegmann, C. Leuenberger, S. Neuenschwander, and L. Excoffier, Rapid evolution and the importance of recombination to the gastroenteric pathogen campylobacter jejuni, 116.INRA, UR546 Biostatistics and Spatial Processes, vol.11, pp.385-397, 2009.

, Bereitgestellt von | De Gruyter / TCS Angemeldet | 212, vol.87, p.97