Reactive extraction of 3-hydroxypropionic acid using tertiary and quaternary amines in decanol and comparison with its isomer 2-hydroxypropionic (lactic) acid

Marwen MOUSSA (1,2)*, Grégoire BURGÉ (1,2,3), Claire SAULOU-BÉRION (1,2),

Henry-Eric SPINNLER (1,2), Violaine ATHÈS-DUTOUR (1,2)

Context

- Within the framework of the development of the bioeconomy: → increasing drive towards the production of chemicals from renewable resources.
- Interest in the sustainable production at the industrial scale of bio-based polymer building blocks, such as the bifunctional carboxylic acid 3-hydroxypropanoic acid (3-HP), is growing [1].
- **Biotechnology** is believed to provide a sustainable route to produce 3-HP.

- Solve product inhibition of 3-HP producing microorganisms
- Develop robust processes that integrate bioconversion and downstream processing

Aims

This work aims to:

- study the reactive extraction of 3-HP, a potentially biocompatible technique that drew a lot of attention lately for the extraction of 2-hydroxypropionic (lactic) acid (2-HP)
- **optimize** the **operating conditions**, bearing in mind the constrains associated with the **integrated process** of bioconversion and reactive extraction
- better understand and control the specific mechanisms involved in reactive extraction prior to the implementation of the integrated process

Material & Methods

Reactive extraction theory

Tertiary amines
$$R_3N$$

$$AH \leftrightarrow A^- + H^+ \\ \overline{R_3N} + H^+ \leftrightarrow \overline{R_3NH^+} \\ \overline{R_3NH^+} + A^- \leftrightarrow \overline{R_3NHA}$$
 Overall reaction: $\overline{R_3N} + HA \leftrightarrow \overline{R_3NHA}$

Quaternary amines R_4NX $\underbrace{AH \leftrightarrow A^- + H^+}_{R_4NX} \leftrightarrow \overline{R_4N^+} + \overline{X^-}_{-}$ $\underline{\qquad \qquad }$ Overall reaction: $\overline{R_4NX} + A^- \leftrightarrow \overline{R_4NA} + X^-$

Basic principle: the extractant (amine diluted in the organic phase) selectively forms a complex with the organic acid (AH in the aqueous phase) $^{[2]}$.

Aqueous phase

- 3-HP and 2-HP solutions of 1 g.L⁻¹. Natural pH of 3.2 and 2.9 respectively.
- The natural pH was adjusted with 12N HCl or 1N NaOH solutions when required.

Organic phase

- Extactants: Tri-*n*-otylamine (TOA) and tri-*n*-octylmethylammonium chloride (Aliquat 336), pure or a mixture of them. Concentrations of up to 60% vol/vol in diluent.
- Diluent: n-decanol.

Results & Discussion

- 2HP extraction is more favored than 3HP, but similar behaviors are exhibited.
- Increasing TOA fraction up to 10-20% \rightarrow enhanced KD_{app}. Nevertheless, the solvation of the acid-amine complex is not favored for higher TOA fractions.
- For dynamic extraction: $K_{D_{app}}$ is improved thanks to the increase in interfacial area \rightarrow overcomes the mass transfer limitation due to complex formation.

■ Extraction by Aliquat 336 is not favored for both acids: the initial pH of the acids < pKa, while Aliquat 336 reacts with the dissociated forms of the acids.

- Synergy between amines: $K_{D_{app}}$ obtained in the case of mixed extractants is higher than the sum of the $K_{D_{app}}$ of each extractant when used alone.
- As for individual amines, the higher affinity of 3-HP to water as compared to 2-HP and its higher pKa \rightarrow huge difference between K_{Dapp} for 3-HP vs 2-HP.

■ Mixed extractants give much higher K_{Dapp} at lower pH values \rightarrow the presence of Aliquat 336 favors the 3-HP extraction by $TOA^{[3]}$.

Conclusion & Prospects

- ♦ 3-HP reactive extraction by a synergistic mixture of TOA and Aliquat 336 in *n*-decanol showed highly interesting performances over a wide range of pH values.
- The reactive extraction was shown to be predominantly controlled by interfacial chemical reactions. Performing it in a membrane contactor will optimize the process.
 Further work is needed to better understand the specific mechanisms of synergy between amines and optimize the reactive extraction of 3-HP.