I. A. Al-shehbaz, M. A. Beilstein, and E. A. Kellogg, Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview, Plant Syst. Evol, vol.259, pp.89-120, 2006.

C. Brooks, V. Nekrasov, Z. B. Lippman, and J. Van-eck, Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-Associated9 system, Plant Physiol, vol.166, pp.1292-1297, 2014.

M. Bui and Z. Liu, Simple allele-discriminating PCR for cost-effective and rapid genotyping and mapping, Plant Methods, vol.5, 2009.

N. M. Butler, P. A. Atkins, D. F. Voytas, D. S. Douches, T. Cerm-ak et al., Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system, Genome Biol, vol.10, pp.735-743, 1998.

C. Collonnier, A. Epert, K. Mara, F. Maclot, A. Guyon-debast et al., CRISPR-Cas9 mediated efficient directed mutagenesis and RAD51-dependent and -independent gene targeting in the moss Physcomitrella patens, Plant Biotechnol. J, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01904879

L. Cong, F. A. Ran, D. Cox, S. Lin, R. Barretto et al., Multiplex genome engineering using CRISPR/Cas systems, Science, vol.339, pp.819-823, 2013.

J. Faure and M. Tepfer, Camelina, a Swiss knife for plant lipid biotechnology, Oilseeds Fats Crops Lipids, vol.23, p.5, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01563915

F. Fauser, S. Schiml, and H. Puchta, Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana, Plant J, vol.79, pp.348-359, 2014.

Z. Feng, B. Zhang, W. Ding, X. Liu, D. Yang et al., Efficient genome editing in plants using a CRISPR/Cas system, Cell Res, vol.23, pp.1229-1232, 2013.

Z. Feng, Y. Mao, N. Xu, B. Zhang, P. Wei et al., Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis, Proc. Natl. Acad. Sci. USA, vol.111, pp.4632-4637, 2014.

J. Gao, G. Wang, S. Ma, X. Xie, X. Wu et al., CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum, Plant Mol. Biol, vol.87, pp.99-110, 2014.

M. Haeussler, K. Sch?-onig, H. Eckert, A. Eschstruth, J. Miann-e et al., Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR, Genome Biol, vol.17, p.148, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346049

R. P. Haslam, O. Sayanova, H. J. Kim, E. B. Cahoon, and J. A. Napier, Synthetic redesign of plant lipid metabolism, Plant J, vol.87, pp.76-86, 2016.

P. D. Hsu, E. S. Lander, and F. Zhang, Development and applications of CRISPR-Cas9 for genome engineering, Cell, vol.157, pp.1262-1278, 2014.

C. Hutcheon, R. F. Ditt, M. Beilstein, L. Comai, J. Schroeder et al., Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes, BMC Plant Biol, vol.10, p.233, 2010.

Y. Ito, A. Nishizawa-yokoi, M. Endo, M. Mikami, and S. Toki, CRISPR/ Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening, Biochem. Biophys. Res. Commun, vol.467, pp.76-82, 2015.

D. James and H. Dooner, Isolation of EMS-induced mutants in Arabidopsis altered in seed fatty-acid composition, Theor. Appl. Genet, vol.80, pp.241-245, 1990.

D. W. James and H. K. Dooner, Novel seed lipid phenotypes in combinations of mutants altered in fatty acid biosynthesis in Arabidopsis, Theor. Appl. Genet, vol.82, pp.409-412, 1991.

H. Jia and W. Nian, Targeted genome editing of sweet orange using Cas9/ sgRNA, PLoS ONE, vol.9, p.4, 2014.

W. Jiang, H. Zhou, H. Bi, M. Fromm, B. Yang et al., Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice, Nucleic Acids Res, vol.41, p.188, 2013.

W. Jiang, B. Yang, and D. P. Weeks, Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations, PLoS ONE, vol.9, pp.21-26, 2014.

M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna et al., A programmable dual-RNA -guided DNA endonuclease in adaptive bacterial immunity, vol.337, pp.816-822, 2012.

S. Julié--galau, Y. Bellec, J. Faure, and M. Tepfer, Evaluation of the potential for interspecific hybridization between Camelina sativa and related wild Brassicaceae in anticipation of field trials of GM camelina, Transgenic Res, vol.23, pp.67-74, 2014.

S. Kagale, C. Koh, J. Nixon, V. Bollina, W. E. Clarke et al., The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure, Nat. Commun, vol.5, p.3706, 2014.

S. Kagale, J. Nixon, Y. Khedikar, A. Pasha, N. J. Provart et al., The developmental transcriptome atlas of the biofuel crop Camelina sativa, Plant J, 2016.

J. Kang, A. R. Snapp, and C. Lu, Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa, Plant Physiol. Biochem, vol.49, pp.223-229, 2011.

T. Lawrenson, O. Shorinola, N. Stacey, C. Li, L. Østergaard et al., Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease, Genome Biol, vol.16, p.258, 2015.

B. Lemieux, M. Miquel, C. Sommerville, and J. Browse, Mutants of Arabidopsis with alterations in seed lipid fatty-acid composition, Theor. Appl. Genet, vol.80, pp.234-240, 1990.

Y. Li, F. Beisson, M. Pollard, and J. Ohlrogge, Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation, Phytochemistry, vol.67, pp.904-915, 2006.

J. Li, J. E. Norville, J. Aach, M. Mccormack, D. Zhang et al., Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9, Nat. Biotechnol, vol.31, pp.688-691, 2013.

Z. Li, Z. Liu, A. Xing, B. P. Moon, J. P. Koellhoffer et al., Cas9-guide RNA directed genome editing in soybean, Plant Physiol, vol.169, pp.960-970, 2015.

Z. Liang, K. Zhang, K. Chen, and C. Gao, Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system, J. Genet. Genomics, vol.41, pp.63-68, 2014.

L. G. Lowder, D. Zhang, N. J. Baltes, J. W. Paul, X. Tang et al., A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation, Plant Physiol, vol.169, pp.971-985, 2015.

C. Lu and J. Kang, Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation, Plant Cell Rep, vol.27, pp.273-278, 2008.

X. Ma, Q. Zhang, Q. Zhu, W. Liu, Y. Chen et al., A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants, Mol. Plant, vol.8, pp.1274-1284, 2015.

Y. Mao, H. Zhang, N. Xu, B. Zhang, F. Gou et al., Application of the CRISPR-Cas system for efficient genome engineering in plants, Mol. Plant, vol.6, 2008.

Y. Mao, Z. Zhang, Z. Feng, P. Wei, H. Zhang et al., Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis, Plant Biotechnol. J, vol.14, pp.519-532, 2016.

J. Miao, D. Guo, J. Zhang, Q. Huang, G. Qin et al., Targeted mutagenesis in rice using CRISPR-Cas system, Cell Res, vol.23, pp.1233-1236, 2013.

M. Miquel, D. James, H. Dooner, and J. Browse, Arabidopsis requires polyunsaturated lipids for low-temperature survival, Proc. Natl Acad. Sci, vol.90, pp.6208-6212, 1993.

S. Mudalkar, R. Golla, S. Ghatty, and A. R. Reddy, De novo transcriptome analysis of an imminent biofuel crop, Camelina sativa L. using Illumina GAIIX sequencing platform and identification of SSR markers, Plant Mol. Biol, vol.84, pp.159-171, 2014.

V. Nekrasov, B. Staskawicz, D. Weigel, J. D. Jones, and S. Kamoun, Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease, Nat. Biotechnol, vol.31, pp.691-693, 2013.

H. T. Nguyen, J. E. Silva, R. Podicheti, J. Macrander, W. Yang et al., Camelina seed transcriptome: a tool for meal and oil improvement and translational research, Plant Biotechnol. J, vol.11, pp.759-769, 2013.

F. Nogu-e, K. Mara, C. Collonnier, and J. M. Casacuberta, Genome engineering and plant breeding: impact on trait discovery and development, Plant Cell Rep, vol.35, pp.1475-1486, 2016.

J. Okuley, J. Lightner, K. Feldmann, N. Yadav, E. Lark et al., Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis, Plant Cell, vol.6, pp.147-158, 1994.

S. Rajeevkumar, P. Anunanthini, and R. Sathishkumar, Epigenetic silencing in transgenic plants, Front. Plant Sci, vol.6, p.693, 2015.

X. Ren, Z. Yang, J. Xu, J. Sun, D. Mao et al., Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila, Cell Rep, vol.9, pp.1151-1162, 2014.

A. Sfeir and L. S. Symington, Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? trends biochem, Science, vol.40, pp.701-714, 2015.

Q. Shan, Y. Wang, J. Li, Y. Zhang, K. Chen et al., Targeted genome modification of crop plants using a CRISPR-Cas system, Nat. Biotechnol, vol.31, pp.686-688, 2013.

W. Song, H. Maeda, and D. Dellapenna, Mutations of the ER to plastid lipid transporters TGD1, 2, 3 and 4 and the ER oleate desaturase FAD2 suppress the low temperature-induced phenotype of Arabidopsis tocopheroldeficient mutant vte2, Plant J, vol.62, pp.1004-1018, 2010.

P. A. Stoutjesdijk, S. P. Singh, Q. Liu, C. J. Hurlstone, P. A. Waterhouse et al., hpRNA-mediated targeting of the arabidopsis FAD2 gene gives highly efficient and stable silencing, Plant Physiol, vol.129, pp.1723-1731, 2002.

S. Svitashev, J. K. Young, C. Schwartz, H. Gao, S. C. Falco et al., Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA, Plant Physiol, vol.169, pp.931-945, 2015.

M. Vazquez-vilar, J. M. Bernab-e-orts, A. Fernandez-del-carmen, P. Ziarsolo, J. Blanca et al., A modular toolbox for gRNA-Cas9 genome engineering in plants based on the GoldenBraid standard, Plant Methods, vol.12, p.10, 2016.

Y. Wang, X. Cheng, Q. Shan, Y. Zhang, J. Liu et al., Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew, Nat. Biotechnol, vol.32, pp.1-6, 2014.

K. Xie and Y. Yang, RNA-Guided genome editing in plants using a CRISPR-Cas system, Mol. Plant, vol.6, pp.1975-1983, 2013.

J. Zhang, H. Liu, J. Sun, B. Li, Q. Zhu et al., Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth, PLoS ONE, vol.7, 2012.

H. Zhang, J. Zhang, P. Wei, B. Zhang, F. Gou et al., The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation, Plant Biotechnol. J, vol.12, pp.797-807, 2014.

Z. Zhang, Y. Mao, S. Ha, W. Liu, J. R. Botella et al., A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis, Plant Cell Rep, vol.35, pp.1519-1533, 2016.

H. Zhou, B. Liu, D. P. Weeks, M. H. Spalding, and B. Yang, Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice, Nucleic Acids Res, vol.42, pp.10903-10914, 2014.