M. Arnaud, A. Chastanet, and M. Débarbouillé, New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, grampositive bacteria, Appl. Environ. Microbiol, vol.70, pp.6887-6891, 2004.

S. Ashok, S. Mohan, Y. Ko, and M. Sankaranarayanan, Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae glpK dhaT, Metab. Eng, vol.15, pp.10-24, 2013.

S. Atsumi, T. Hanai, and J. C. Liao, Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels, Nature, vol.451, pp.86-89, 2008.

S. Atsumi and J. C. Liao, Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli, Appl. Environ. Microbiol, vol.74, pp.7802-7808, 2008.

I. Borodina, K. R. Kildegaard, N. B. Jensen, T. H. Blicher, J. Maury et al., Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via ?-alanine, Metab. Eng, vol.27, pp.57-64, 2015.

G. Burgé, A. L. Flourat, B. Pollet, H. E. Spinnler, A. et al., 3-Hydroxypropionaldehyde (3-HPA) quantification by HPLC using a synthetic acrolein-free 3-hydroxypropionaldehyde system as analytical standard, RSC Adv, vol.5, pp.92619-92627, 2015.

G. Burgé, C. Saulou-bérion, M. Moussa, F. Allais, V. Athes et al., Relationships between the use of Embden Meyerhof pathway (EMP) or Phosphoketolase pathway (PKP) and lactate production capabilities of diverse Lactobacillus reuteri strains, J. Microbiol, vol.53, pp.702-710, 2015.

P. Chandrangsu, R. Dusi, C. J. Hamilton, and J. D. Helmann, Methylglyoxal resistance in Bacillus subtilis: contributions of bacillithioldependent and independent pathways, Mol. Microbiol, vol.91, pp.706-715, 2014.

N. Chaudhary, M. O. Ngadi, and B. Simpson, Comparison of glucose, glycerol and crude glycerol fermentation by Escherichia Coli K12, J. Bioprocess. Biotech, vol.1, p.1, 2012.

Y. Chen, J. Bao, I. Kim, V. Siewers, and J. Nielsen, Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae, Metab. Eng, vol.22, pp.104-109, 2014.

Y. Chen and J. Nielsen, Biobased organic acids production by metabolically engineered microorganisms, Curr. Opin. Biotechnol, vol.37, pp.165-172, 2016.

S. Choi, C. W. Song, J. H. Shin, and S. Y. Lee, Biorefineries for the production of top building block chemicals and their derivatives, Metab. Eng, vol.28, pp.223-239, 2015.

H. S. Chu, Y. S. Kim, C. M. Lee, J. H. Lee, W. S. Jung et al., Metabolic engineering of 3-hydroxypropionic acid biosynthesis in Escherichia coli, Biotechnol. Bioeng, vol.112, pp.356-364, 2015.

A. Y. Chun, L. Yunxiao, S. Ashok, E. Seol, and S. Park, Elucidation of toxicity of organic acids inhibiting growth of Escherichia coli W, Biotechnol. Bioprocess Eng, vol.865, pp.858-865, 2014.

J. Cox, I. Matic, M. Hilger, N. Nagaraj, M. Selbach et al., A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics, Nat. Protoc, vol.4, pp.698-705, 2009.

G. P. Da-silva, M. Mack, and J. Contiero, Glycerol: a promising and abundant carbon source for industrial microbiology, Biotechnol. Adv, vol.27, pp.30-39, 2009.

A. L. Demain, Minimal media for quantitative studies with Bacillus subtilis, J. Bacteriol, vol.75, pp.517-522, 1958.

T. Dishisha, S. H. Pyo, and R. H. Kaul, Bio-based 3-hydroxypropionicand acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis, Microb. Cell Fact, vol.14, 0200.

H. Dong and D. Zhang, Current development in genetic engineering strategies of Bacillus species, Microb. Cell Fact, vol.13, p.63, 2014.

C. Fabret, S. D. Ehrlich, and P. Noirot, A new mutation delivery system for genome-scale approaches in Bacillus subtilis, Mol. Microbiol, vol.46, pp.25-36, 2002.

J. Fu, G. Huo, L. Feng, Y. Mao, Z. Wang et al., Biotechnology for biofuels metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production, Biotechnol. Biofuels, vol.9, p.90, 2016.

T. Hanai, S. Atsumi, and J. C. Liao, Engineered synthetic pathway for isopropanol production in Escherichia coli, Appl. Environ. Microbiol, vol.73, pp.7814-7818, 2007.

J. Hao, R. Lin, Z. Zheng, Y. Sun, and D. Liu, 3-Hydroxypropionaldehyde guided glycerol feeding strategy in aerobic 1,3-propanediol production by Klebsiella pneumoniae, J. Ind. Microbiol. Biotechnol, vol.35, pp.1615-1624, 2008.

C. R. Harwood and S. M. Cutting, Chemically defined growth media and supplements, Molecular Biological Methods for Bacillus, p.548, 1990.

C. Holmberg, L. Beijer, B. Rutberg, and L. Rutberg, Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3-phosphate dehydrogenase (glpD), J. Gen. Microbiol, vol.136, pp.2367-2375, 1990.

Y. Huang, Z. Li, K. Shimizu, Y. , and Q. , Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol by a recombinant strain of Klebsiella pneumoniae, Bioresour. Technol, vol.103, pp.351-359, 2012.

Y. Huang, Z. Li, K. Shimizu, Y. , and Q. , Co-production of 3-hydroxypropionic acid and 1,3-propanediol by Klebseilla pneumoniae expressing aldH under microaerobic conditions, Bioresour. Technol, vol.128, pp.505-512, 2013.

X. Jiang, X. Meng, and M. Xian, Biosynthetic pathways for 3-hydroxypropionic acid production, Appl. Microbiol. Biotechnol, vol.82, pp.995-1003, 2009.

I. Jung, J. Lee, W. Min, Y. Park, and J. Seo, Bioresource technology simultaneous conversion of glucose and xylose to 3-hydroxypropionic acid in engineered Escherichia coli by modulation of sugar transport and glycerol synthesis, Bioresour. Technol, vol.198, pp.709-716, 2015.

W. S. Jung, J. H. Kang, H. S. Chu, I. S. Choi, and K. M. Cho, Elevated production of 3-hydroxypropionic acid by metabolic engineering of the glycerol metabolism in Escherichia coli, Metab. Eng, vol.23, pp.116-122, 2014.

K. R. Kildegaard, B. M. Hallstrom, T. H. Blicher, N. Sonnenschein, N. B. Jensen et al., Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance, Metab. Eng, vol.26, pp.57-66, 2014.

K. R. Kildegaard, Z. Wang, Y. Chen, J. Nielsen, and I. Borodina, Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae, Metab. Eng. Commun, vol.2, pp.132-136, 2015.

K. Kim, S. K. Kim, Y. C. Park, and J. H. Seo, Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli, Bioresour. Technol, vol.156, pp.170-175, 2014.

F. J. Kruyssen, W. R. De-boer, and J. T. Wouters, Effects of carbon source and growth rate on cell wall composition of Bacillus subtilis subsp. niger, J. Bacteriol, vol.144, pp.238-246, 1980.

V. Kumar, S. Ashok, and S. Park, Recent advances in biological production of 3-hydroxypropionic acid, Biotechnol. Adv, vol.31, pp.945-961, 2013.

V. Kumar, M. Sankaranarayanan, S. Ashok, Y. Ko, R. Sarkar et al., Co-production of 3-hydroxypropionic acid and 1, 3-propanediol from glycerol using resting cells of recombinant Klebsiella pneumoniae J2B strain overexpressing aldehyde dehydrogenase, Appl. Microbiol. Biotechnol, vol.96, pp.373-383, 2012.

J. J. Landmann, R. A. Busse, J. Latz, K. D. Singh, J. Stülke et al., Crh, the paralogue of the phosphocarrier protein HPr, controls the methylglyoxal bypass of glycolysis in Bacillus subtilis, Mol. Microbiol, vol.82, pp.770-787, 2011.

S. N. Lindner, T. M. Meiswinkel, M. Panhorst, J. W. Youn, L. Wiefel et al., Glycerol-3-phosphatase of Corynebacterium glutamicum, J. Biotechnol, vol.159, pp.216-224, 2012.

A. J. Maris, W. N. Konings, J. P. Van-dijken, and J. T. Pronk, Microbial export of lactic and 3-hydroxypropanoic acid: implications for industrial fermentation processes, Metab. Eng, vol.6, pp.245-255, 2004.

R. Mckenna and D. R. Nielsen, Styrene biosynthesis from glucose by engineered E. coli, Metab. Eng, vol.13, pp.544-554, 2011.

K. Niu, T. Xiong, H. B. Qin, H. Wu, Z. Q. Liu et al., 3-Hydroxypropionic acid production by recombinant Echerichia coli ZJU-3HP01using glycerol-glucose dual-substrate fermentative strategy, Biotechnol. Appl. Biochem, 2016.

Y. K. Oh, B. O. Palsson, S. M. Park, C. H. Schilling, and R. Mahadevan, , 2007.

, Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data, J. Biol. Chem, vol.282, pp.28791-28799

Y. S. Park, K. Kai, and T. Kobayashi, Enhanced beta-galactosidase production by high cell-density culture of recombinant Bacillus subtilis with glucose concentration control, Biotechnol. Bioeng, vol.40, pp.686-696, 1992.

S. M. Raj, C. Rathnasingh, J. Jo, and S. Park, Production of 3-hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain, Process Biochem, vol.43, pp.1440-1446, 2008.

C. Rathnasingh, S. M. Raj, J. E. Jo, and S. Park, Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol, Biotechnol. Bioeng, vol.104, pp.729-739, 2009.

M. Sankaranarayanan, S. Ashok, and S. Park, Production of 3-hydroxypropionic acid from glycerol by acid tolerant Escherichia coli, J. Ind. Microbiol. Biotechnol, vol.41, pp.1039-1050, 2014.

J. Schellenberger, R. Que, R. M. Fleming, I. Thiele, J. D. Orth et al., Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0, Nat. Protoc, vol.6, pp.1290-1307, 2011.

A. Shevchenko, H. Thomas, J. Havlis, J. V. Olsen, and M. Mann, In-gel digestion for mass spectrometric characterization of proteins and proteomes, Nat. Protoc, vol.1, pp.2856-2860, 2007.

K. Tsuruno, H. Honjo, and T. Hanai, Enhancement of 3-hydroxypropionic acid production from glycerol by using a metabolic toggle switch, Microb. Cell Fact, vol.14, p.155, 2015.

V. Vagner, E. Dervyn, and D. Ehrlich, A vector for systematic gene inactivation in Bacillus subtilis, Microbiology, vol.144, pp.3097-3104, 1998.

K. N. Valdehuesa, H. Liu, G. M. Nisola, W. J. Chung, S. H. Lee et al., Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical, Appl. Microbiol. Biotechnol, vol.97, pp.3309-3321, 2013.

A. W. Westbrook, M. Moo-young, C. P. Chou, L. Zhao, J. Lin et al., Development of a twostep process for production of 3-hydroxypropionic acid from glycerol using Klebsiella pneumoniae and Gluconobacter oxydans, Appl. Environ. Microbiol, vol.82, pp.2487-2495, 2015.