W. M. Budzianowski and K. Postawa, Total Chain Integration of sustainable biorefinery systems, Appl. Energy, 2016.
DOI : 10.1016/j.apenergy.2016.06.050

A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney et al., The path forward for biofuels and biomaterials, vol.311, pp.484-489, 2006.
DOI : 10.1126/science.1114736

J. Wang, Improvement of citric acid production by Aspergillus niger with addition of phytate to beet molasses, Bioresour. Technol, vol.65, pp.243-245, 1998.

Y. W. Han and M. A. Watson, Production of microbial levan from sucrose, sugarcane juice and beet molasses, J. Ind. Microbiol, vol.9, pp.257-260, 1992.

C. Kotzamanidis, T. Roukas, and G. Skaracis, Optimization of lactic acid production from beet molasses by Lactobacillus delbrueckii NCIMB 8130, World J. Microbiol. Biotechnol, vol.18, pp.441-448, 2002.

A. Dumbrepatil, M. Adsul, S. Chaudhari, J. Khire, and D. Gokhale, Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii Mutant Uc-3 in batch fermentation, Appl. Environ. Microbiol, vol.74, pp.333-335, 2008.

F. Savino, S. Fornasero, S. Ceratto, A. Marco, N. Mandras et al., Probiotics and gut health in infants: A preliminary case-control observational study about early treatment with Lactobacillus reuteri DSM 17938, Clin. Chim. Acta, 2015.

M. Sauer, D. Porro, D. Mattanovich, and P. Branduardi, Microbial production of organic acids: Expanding the markets, Trends Biotechnol, vol.26, pp.100-108, 2008.

L. H. Luo, J. Seo, J. Baek, B. Oh, S. Heo et al., Identification and characterization of the propanediol utilization protein PduP of Lactobacillus reuteri for 3-hydroxypropionic acid production from glycerol, Appl. Microbiol. Biotechnol, vol.89, pp.697-703, 2011.

T. Dishisha, S. Pyo, and R. Hatti-kaul, Bio-based 3-hydroxypropionic-and acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis, Microb. Cell Fact, vol.14, 0200.
DOI : 10.1186/s12934-015-0388-0

URL : https://microbialcellfactories.biomedcentral.com/track/pdf/10.1186/s12934-015-0388-0

T. Dishisha, L. P. Pereyra, S. Pyo, R. A. Britton, and R. Hatti-kaul, Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol, Microb. Cell Fact, vol.13, p.76, 2014.

E. J. Aguirre-ezkauriatza, J. M. Aguilar-yáñez, A. Ramírez-medrano, and M. M. Alvarez, Production of probiotic biomass (Lactobacillus casei) in goat milk whey: Comparison of batch, continuous and fed-batch cultures, Bioresour. Technol, vol.101, pp.2837-2844, 2010.

M. Krzywonos and T. Eberhard, High density process to cultivate Lactobacillus plantarum biomass using wheat stillage and sugar beet molasses, Electron. J. Biotechnol, vol.14, 2011.
DOI : 10.2225/vol14-issue2-fulltext-10

URL : http://www.bioline.org.br/pdf?ej11018

I. S. Maddox and S. H. Richert, Use of response surface methodology for the rapid optimization of microbiological media, J. Appl. Bacteriol, vol.43, pp.197-204, 1977.

C. P. Chang and S. L. Liew, Growth medium optimization for biomass production of a probiotic bacterium, Lactobacillus rhamnosus ATCC 7469, J. Food Biochem, 2012.

A. Kumari, P. Mahapatra, and R. Banerjee, Statistical optimization of culture conditions by response surface methodology for synthesis of lipase with Enterobacter aerogenes, Braz. Arch. Biol. Technol, vol.52, pp.1349-1356, 2009.

M. Polak-berecka, A. Wa´skowa´sko, M. Kordowska-wiater, M. Podle´snypodle´sny, Z. Targó-nski et al., Optimization of medium composition for enhancing growth of Lactobacillus rhamnosus PEN using response surface methodology, Pol. J. Microbiol, vol.59, pp.113-118, 2010.

S. M. Rafigh, A. V. Yazdi, M. Vossoughi, A. A. Safekordi, and M. Ardjmand, Optimization of culture medium and modeling of curdlan production from Paenibacillus polymyxa by RSM and ANN, Int. J. Biol. Macromol, vol.70, pp.463-473, 2014.

C. A. Zárate-chaves, M. C. Romero-rodríguez, F. C. Niño-arias, J. Robles-camargo, M. Linares-linares et al., Gutiérrez-Rojas, I. Optimizing a culture medium for biomass and phenolic compounds production using Ganoderma lucidum, Braz. J. Microbiol, vol.44, pp.215-223, 2013.

G. Burgé, A. L. Flourat, B. Pollet, H. E. Spinnler, and F. Allais, 3-Hydroxypropionaldehyde (3-HPA) quantification by HPLC using a synthetic acrolein-free 3-hydroxypropionaldehyde system as analytical standard, RSC Adv, vol.5, pp.92619-92627, 2015.

L. Eriksson, Design of Experiments: Principles and Applications; Umetrics Academy-Training in Multivariate Technology, Umetrics AB, 2000.

M. P. Taranto, J. L. Vera, J. Hugenholtz, G. F. Valdez, and F. Sesma, Lactobacillus reuteri CRL1098 produces cobalamin, J. Bacteriol, vol.185, pp.5643-5647, 2003.

F. Santos, J. L. Vera, R. Van-der-heijden, G. Valdez, W. M. De-vos et al., The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL1098, Microbiology, vol.154, pp.81-93, 2008.

G. Burgé, C. Saulou-bérion, M. Moussa, B. Pollet, A. Flourat et al., Diversity of Lactobacillus reuteri strains in converting glycerol into 3-Hydroxypropionic ccid, Appl. Biochem. Biotechnol, vol.177, pp.923-939, 2015.

E. Arsköld, E. Lohmeier-vogel, R. Cao, S. Roos, P. Rådström et al., Phosphoketolase pathway dominates in Lactobacillus reuteri ATCC 55730 containing dual pathways for glycolysis, J. Bacteriol, vol.190, pp.206-212, 2008.

F. Santos, J. K. Spinler, D. M. Saulnier, D. Molenaar, B. Teusink et al., Functional identification in Lactobacillus reuteri of a PocR-like transcription factor regulating glycerol utilization and vitamin B12 synthesis, Microb. Cell Fact, vol.10, pp.55-66, 2011.

H. Krauter, T. Willke, and K. Vorlop, Production of high amounts of 3-hydroxypropionaldehyde from glycerol by Lactobacillus reuteri with strongly increased biocatalyst lifetime and productivity, New Biotechnol, vol.29, pp.211-217, 2012.

B. M. Corcoran, C. Stanton, G. Fitzgerald, and R. P. Ross, Life under stress: The probiotic stress response and how it may be manipulated, Curr. Pharm. Des, vol.14, pp.1382-1399, 2008.

M. Senz, B. Van-lengerich, J. Bader, and U. Stahl, Control of cell morphology of probiotic Lactobacillus acidophilus for enhanced cell stability during industrial processing, Int. J. Food Microbiol, vol.192, pp.34-42, 2015.

F. Barbirato, J. P. Grivet, P. Soucaille, and A. Bories, 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species, Appl. Environ. Microbiol, vol.62, pp.1448-1451, 1996.

V. Cleusix, C. Lacroix, S. Vollenweider, M. Duboux, and G. Blay, Le Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria, BMC Microbiol, vol.7, 2007.

R. R. Sardari, T. Dishisha, S. Pyo, and R. Hatti-kaul, Biotransformation of glycerol to 3-hydroxypropionaldehyde: Improved production by in situ complexation with bisulfite in a fed-batch mode and separation on anion exchanger, J. Biotechnol, vol.168, pp.534-542, 2013.

F. L. Sebastianes, N. Cabedo, N. El-aouad, A. M. Valente, P. T. Lacava et al., 3-hydroxypropionic acid as an antibacterial agent from endophytic fungi Diaporthe phaseolorum, Curr. Microbiol, vol.65, pp.622-632, 2012.