Dual Mechanism for Bitter Avoidance in Drosophila
Alice Sarah French, Marie-Jeanne Sellier, Ali Agha Moutaz, Alexandra Guigue, Marie-Ange Chabaud, Pablo D. Reeb, Aniruddha Mitra, Yves Grau, Laurent Soustelle, Frederic Marion-Poll

To cite this version:

HAL Id: hal-01544974
https://hal-agroparistech.archives-ouvertes.fr/hal-01544974
Submitted on 27 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Behavioral/Cognitive

Dual Mechanism for Bitter Avoidance in *Drosophila*

Alice Sarah French,1,2,* Marie-Jeanne Sellier,1,2,* Moutaz Ali Agha,1,2 Alexandra Guigue,1,2 *Marie-Ange Chabaud,1,* Pablo D. Reeb,3 Aniruddha Mitra,7 Yves Grau,4,5,6 Laurens Soustelle,4,5,6 and Frédéric Marion-Poll1,2,7

1Institut National de la Recherche Agronomique, Unité Mixte de Recherche (UMR) Institut d’Ecologie et des Sciences de l’Environnement de Paris, F-78026 Versailles, France; 2AgroParisTech, Département Sciences de la Vie et Santé, F-75231 Paris, France; 3Universidad Nacional del Comahue, Facultad de Ciencias Agrarias, Departamento de Estadística, RA-8303 Cinco Saltos, Argentina; 4Centre National de la Recherche Scientifique (CNRS), UMR 5203, Institut de Génomique Fonctionnelle, F-34094 Montpellier, France; 5Institut National de la Santé et de la Recherche Médicale, U661, F-34094 Montpellier, France; 6Universités de Montpellier 1 and 2, UMR 5203, F-34094 Montpellier, France, and 7CNRS, Unité mixte de Recherches UMR 9191, Evolution, Génomes, Comportement, Ecologie F-91198 Gif-sur-Yvette, France

In flies and humans, bitter chemicals are known to inhibit sugar detection, but the adaptive role of this inhibition is often overlooked. At best, this inhibition is described as contributing to the rejection of potentially toxic food, but no studies have addressed the relative importance of the direct pathway that involves activating bitter-sensitive cells versus the indirect pathway represented by the inhibition of sugar detection. Using toxins to selectively ablate or inactivate populations of bitter-sensitive cells, we assessed the behavioral responses of flies to sucrose mixed with strychnine (which activates bitter-sensitive cells and inhibits sugar detection) or with L-canavanine (which only activates bitter-sensitive cells). As expected, flies with ablated bitter-sensitive cells failed to detect l-canavanine mixed with sucrose in three different feeding assays (proboscis extension responses, capillary feeding, and two-choice assays). However, such flies were still able to avoid strychnine mixed with sucrose. By means of electrophysiological recordings, we established that bitter molecules differ in their potency to inhibit sucrose detection and that sugar-sensing inhibition affects taste cells on the proboscis and the legs. The optogenetic response of sugar-sensitive cells was not reduced by strychnine, thus suggesting that this inhibition is linked directly to sugar transduction. We postulate that sugar-sensing inhibition represents a mechanism in insects to prevent ingesting harmful substances occurring within mixtures.

Key words: behavior; bitter; *Drosophila*; electrophysiology; mixture interaction; sweet

Introduction

Animals, including insects, detect a number of chemicals as aversive via specialized taste cells (Yarmolinsky et al., 2009). These aversive chemicals define a sensory space usually described as “bitter” by analogy with human sensation. Bitter taste is thought to contribute to protecting animals against ingesting potentially toxic molecules (Glendinning, 2002, 2007). Accordingly, omnivorous/polyphagous animals possess a large panel of bitter taste receptors, whereas animals specialized on a restricted diet have few, because they are potentially exposed to a lesser variety of toxic molecules. This rule has been observed in vertebrates (Wooding, 2005; Dong et al., 2009; Jiang et al., 2012; Hong and Zhao, 2014; Li and Zhang, 2014) and insects (McBride and Arghello, 2007; Richards et al., 2008; Kirkness et al., 2010), with a few exceptions (Wanner and Robertson, 2008; Egsontia et al., 2014). Animals, including insects, also possess “sweet” receptors expressed in specific taste cells that detect molecules triggering food acceptance (Zhao et al., 2003; Chandrashekar et al., 2006; Yarmolinsky et al., 2009). These two populations of taste cells that sense either sugar or bitter chemicals directly trigger feeding or aversion if activated (Marella et al., 2006; Hiroi et al., 2008; Gordon and Scott, 2009), whereas disrupting one of them impairs the corresponding behavior (Wang et al., 2004). This suggests that taste is encoded by labeled lines and supports the view that the final decision is taken after the brain has weighed information from these two lines (Masek and Scott, 2010).

However, each taste modality is not insensitive to stimuli from other modalities. For example, bitter chemicals inhibit sugar detection in insects of different groups (Morita, 1959; Dethier, 1980, 1987; Schoonhoven, 1982; Dethier and Bowd- dan, 1989, 1992; Chapman et al., 1991; Schoonhoven and Liner, 1994), including *Drosophila* (Meunier et al., 2003a; Lee et al., 2014; Vincent et al., 2014) and vertebrates (Vinnikov et al., 2007). If the interaction is aversive, bitter and sweet taste may be experienced as a single taste, but if the interaction is attractive, the two tastes may be integrated (Matsuo et al., 2006). This integration can occur at the neural processing level or at the behavioral level, as illustrated by the demonstration that eating sucrose by itself can enhance the perception of bitter taste (Matsuo et al., 2006).

In flies and humans, bitter chemicals are known to inhibit sugar detection, but the adaptive role of this inhibition is often overlooked. At best, this inhibition is described as contributing to the rejection of potentially toxic food, but no studies have addressed the relative importance of the direct pathway that involves activating bitter-sensitive cells versus the indirect pathway represented by the inhibition of sugar detection. Using toxins to selectively ablate or inactivate populations of bitter-sensitive cells, we assessed the behavioral responses of flies to sucrose mixed with strychnine (which activates bitter-sensitive cells and inhibits sugar detection) or with L-canavanine (which only activates bitter-sensitive cells). As expected, flies with ablated bitter-sensitive cells failed to detect l-canavanine mixed with sucrose in three different feeding assays (proboscis extension responses, capillary feeding, and two-choice assays). However, such flies were still able to avoid strychnine mixed with sucrose. By means of electrophysiological recordings, we established that bitter molecules differ in their potency to inhibit sucrose detection and that sugar-sensing inhibition affects taste cells on the proboscis and the legs. The optogenetic response of sugar-sensitive cells was not reduced by strychnine, thus suggesting that this inhibition is linked directly to sugar transduction. We postulate that sugar-sensing inhibition represents a mechanism in insects to prevent ingesting harmful substances occurring within mixtures.

Key words: behavior; bitter; *Drosophila*; electrophysiology; mixture interaction; sweet
2010, 2012; Sellier and Marion-Poll, 2011; Jeong et al., 2013) in which other interactions were described recently, such as be-
tween sugars and acids (Charlu et al., 2013; Chen and Amrein, 2014). Whereas the molecular basis of bitter suppression of sugar
detection is still under scrutiny and may involve odorant binding proteins (OBPs; Jeong et al., 2013; Swarup et al., 2014), the be-
avioral role of such interactions have been considered rarely (König et al., 2014).

We examined here to what extent bitter suppression of sugar
detection influences behavioral choices in adult Drosophila. We
demonstrate that the activation of bitter-sensitive cells does not
suffice to inhibit proboscis extension responses (PERs) and that complete
inhibition of the PER requires shutting off the signal
conveyed by sugar-sensitive cells. Using behavior and optogenet-
ics, we show that the simultaneous activation of bitter-sensitive
cells along with the inhibition of sugar detection is necessary to
elaborate a proper response to ambiguous mixtures of tastants.
We further show that sugar-sensitive cell inhibition is a specific
property of sugar transduction. We postulate that sugar-sensing
inhibition complements canonical bitter detection to prevent the
ingestion of harmful substances when mixed with beneficial
substances.

Materials and Methods

Chemicals. Sucrose, KCl, l-canavanine, caffeine, lobeline, esin, nicotine, strychnine, denatonium, tricholine citrate (TEC), eugonolactone, sul-
fohydroxamic B, and all trans-retinal were from Sigma-Aldrich. Brilliant
blue FCF was from Tokyo Kasei.

Flies. Flies were maintained on a standard cornmeal agar medium at
25°C and 80% humidity on a 12 h light/dark cycle. Unless notified oth-
erwise, we used 2- to 5-d-old adults. Insects subjected to behavioral tests
were starved for 24 h before the experiment.

To manipulate specific populations of taste cells, we used the UAS–
Gal4 system (Brand and Perrimon, 1993). Bitter-sensitive cells were tar-
ged using Gr66a–Gal4 (Wang et al., 2004). Sugar-sensitive cells were
addressed with Gr64f–Gal4 (Dahanukar et al., 2007). We crossed these
flies with flies carrying a secondary transgene activated by GAL4 in the
progeny. As a secondary transgene, we used a diphtheria toxin (UAS–
DTI; Wang et al., 2004) to ablate cells expressing Gr66a in the progeny
(called Gr66a–DTI throughout text). We also used the tetanus toxin
chain (TeTLC), which impairs neurotransmission at synapses by
degradation synaptobrevin (Sweeney et al., 1995). In the progeny
of Gr66a–Gal4 flies crossed with UAS–TeTLC flies and Gr66a–Gal4/;
UAS–TeTLC/+ flies (mentioned as Gr66a➢TeTLC throughout text),
bitter-sensitive neurons are inactive. To express a channel rhodopsin
into taste neurons, UAS–ChR2 flies were crossed with flies carrying
Gr66a–Gal4 (Wang et al., 2004) or Gr64f–Gal4 (Dahanukar et al., 2007).
In the progeny (mentioned as Gr66a➢ChR2 and Gr64f➢ChR2 through-
out text), blue light (BL) induces a spiking activity in the neurons ex-
pressing channelrhodopsin 2 (ChR2). These flies and the control strains
were raised on medium supplemented with 1 mU all trans-retinal (Sch-
roll et al., 2006; Hornstein et al., 2009) and kept in darkness.

w^{118}, Gr66a–Gal4, and UAS–DTI strains were generously provided by
Kristin Scott (University of California at Berkeley, CA) and Gr64f–Gal4
flies by John Carlson (Yale University, New Haven, CT). UAS–TeTLC
and UAS–ChR2 flies were obtained from the Bloomington Drosophila
Stock Center (strains BL 28997 and BL 28995, respectively). A list of the
flies used in this study is provided in Table 1. In all experiments, we
compared flies carrying both transgenes (UAS and GAL4) to their par-
ents carrying only one transgene and designed hereafter as control flies.

**Proboscis responses (PER and proboscis retraction) after stimulation of
labellar sensilla.** To stimulate labellar taste sensilla, flies (1–5 d old) were
prepared according to Shiraiwa and Carlson (2007). Before the experi-
ment, flies were starved for 24 h by placing them into a vial with humid
cotton. Flies were introduced into the cut ends of 200 μL micropipette
ips so that the head was protruding and the proboscis was free to move.
Taste sensilla of the labellum were stimulated by gently touching the
labellum during 2 s with the fine tapering end of a strip of filter paper,
soaked with the test solution (Fig. 1A); if the fly extended its proboscis,
the stimulus was removed immediately to prevent drinking. We scaled the
PER of the fly as 1 if the proboscis was fully extended within 2 s after
the contact and as 0 otherwise. We also monitored proboscis retraction
(PR) and scaled it as 1 if the fly retracted the proboscis (and maintained retraction)
within 5 s after having fully extended it and 0 otherwise (Fig. 1A; Dewitz,
1980; Mitri et al., 2009).

We used this method to test whether ablating cells expressing Gr66a
affects the responses to sugar mixed with strychnine or l-canavanine,
which are both aversive for flies (Meunier et al., 2003a; Hiroi et al., 2004;
Mitri et al., 2009; Sellier et al., 2011; Lee et al., 2012; Devambez et al.,
2013). l-Canavanine is an analog molecule, whereas l-canavanine is a toxic
nonprotein amino acid (Rosenthal, 2001; Kool, 2005). Both substances
activate bitter-sensitive cells in Drosophila and do not activate other taste
cells (Meunier et al., 2003a; Hiroi et al., 2004; Lee et al., 2012). Therefore,
it is expected that flies deprived of their bitter-sensitive cells should
become less sensitive to these substances. Furthermore, there should be a
discrepancy between the effect of bitter-sensitive cell ablation on
l-canavanine and strychnine avoidance given that the former does not
strongly inhibit sugar-sensitive cells (Jeong et al., 2013).

The sequence of stimulation was water, sucrose, test solution (strych-
nine plus sucrose, l-canavanine plus sucrose, or sucrose alone), sucrose,
and water, each separated by 2 min. The responses to the test stimulus
were recorded from only those flies that responded to the first sucrose
presentation and that did not respond to water. The concentrations of
chemicals used were 0.1 M sucrose, 10 mM strychnine plus 0.1 M sucrose,
and 40 mM l-canavanine plus 0.1 M sucrose.

Proboscis responses (PER and PR) after stimulation of leg sensilla. To
stimulate taste sensilla of the thoracic legs, four to five flies (narco-
ized with ice) were disposed on a microscopic slide, placed on pads of
adhesive clay (UHU yellow patafix), and restrained on their dorsum with
fine strips of tape. They were left to recover from the manipulation at
25°C and 80% humidity for 2 h. Before the experiment, flies were fed
water to satiation, and their legs were washed with water. The legs were

<table>
<thead>
<tr>
<th>Table 1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fly strain</td>
</tr>
<tr>
<td>White</td>
</tr>
<tr>
<td>Gr66a–Gal4</td>
</tr>
<tr>
<td>Gr64f–Gal4</td>
</tr>
<tr>
<td>Gr33a–Gal4</td>
</tr>
<tr>
<td>UAS–DTI</td>
</tr>
<tr>
<td>Gr66a–Gal4/UAS–ChR2</td>
</tr>
<tr>
<td>Gr66a–Gal4/UAS–ChR2</td>
</tr>
<tr>
<td>Gr66a–Gal4/+;UAS–DTI/++; UAS–TeTLC.Cntn</td>
</tr>
<tr>
<td>Gr66a–Gal4/+;UAS–TeTLC.Cntn</td>
</tr>
</tbody>
</table>
stretched by touching them gently for 5 s with a toothpick dipped previously into a test solution. If the solution applied was a mixture, only one leg was touched (Fig. 2A). If bitter and sugar solutions were applied separately, one leg was stimulated with sugar and the contralateral leg was stimulated with bitter (or with water; Fig. 2A). Flies that did not extend their proboscis in response to the first presentation of sucrose were discarded. PERs and PRs were noted as mentioned previously.

This method was used to evaluate whether the mode of presentation of the stimuli had an influence on PER/PR and whether ablating different populations of bitter-sensitive cells of Gr66a>DTI or Gr33a>DTI flies would affect the responses. The order of stimulation was water, sucrose, test, water, and sucrose, separated by 2 min, at the same concentrations would affect the responses. The order of stimulation was water, sucrose, test (sucrose or sucrose plus BL), water, and sucrose. To evaluate the effect of strychnine on the PERs/PRs to the optogenetic activation of sugar-sensitive cells, we stimulated Gr64f>ChR2 flies with a spot of BL during 5 s and presented 10 mM strychnine concurrently (Fig. 3B). The order of stimulation was BL, BL plus water (control for tactile stimulation), test (BL or BL plus strychnine), water, and BL plus water. Gr64f>ChR2 flies that did not respond to the first BL stimulation and to BL plus water were discarded. The control strains were unresponsive to BL.

Multiple choice capillary feeder test. Multiple choice capillary feeder (MultiCAFE) experiments were performed as in the study by Sellier et al. (2011). Female flies (1–2 d old) were fed fresh food for 1 d and then starved for 20–22 h in the presence of a disk of water-saturated filter paper. Groups of 20 flies were then introduced into a plastic box and given access to an array of capillaries (5 μl, 32 mm; Hirschmann Geräte) containing food solutions for 2 h (in the dark; 25°C, 70% humidity). The liquid level in each capillary was measured using NIH Image (Rasband and Bright, 1995) from pictures taken just before and at the end of the experiment. To assess evaporation, an additional box containing no flies was prepared. This box was prepared and handled in a similar manner, and the average change in liquid level, corresponding to evaporation, was subtracted from consumption measurements obtained from boxes containing flies. This test was used to assess whether Gr66a>DTI and Gr66a>TeTxLC flies are defective in the detection of different concentrations of strychnine and l-canavanine mixed with sucrose.

Two-choice feeding test. Flies (3–5 d old) were starved on water-saturated cotton for 24 h and then placed in groups of 100 on a 60-well microtiter plate (Dutscher) at 25°C for 2 h in the dark. Alternating wells contained either 1% agarose with 0.15 mg/ml eriochrome cyanine dye (blue) and 5 mM sucrose (and 10 mM strychnine or 40 mM l-canavanine) or 0.2 mg/ml sulforhodamine B dye (red) and 1 mM sucrose. After 2 h, the flies were frozen and sorted according to abdomen color blue (B), red (R), or purple (P). A preference index (PI) for the blue solution was computed as (NB + 0.5NP)/(NB + NP + NR) where N stands for the number of flies of each category. A PI value of 1 indicates complete preference for the 5 mM sucrose (blue) solution, whereas 0 indicates complete preference for the 1 mM sucrose (red) solution. To check that the food colors are not entailing a bias, the same experiment was performed after exchanging the colors. This test was used to evaluate whether Gr66a>TeTxLC flies are defective in the detection of sugar mixed with either 10 mM strychnine or 30 mM l-canavanine.

Electrophysiological recordings from taste sensilla on the proboscis. Taste sensilla were recorded from the proboscis of 1- to 5-d-old female flies. Flies were immobilized with fine strips of tape on a pad of clay (UHU yellow patafix) to maintain the proboscis extended and to expose sensilla of the labellum. The fly’s body was electrically connected to the ground through either a glass electrode containing 0.1 mKCl or a drop of electrocardiogram gel connected to a silver wire. Individual taste sensilla (15, s6, and i9; see Fig. 5B–E) were stimulated for 2 s with a capillary electrode containing the stimulus and an electrolyte. This electrolyte was either 1 mKCl or 30 mM TCC to inhibit the activity from the water cell (Wieczorek and Wolff, 1989). The recording electrode was connected to a taste-specific amplifier (Marion-Poll and van der Pers, 1996), further amplified 50–100 times, bandpass filtered at 10–2800 Hz (CyberAmp 320; Molecular Devices), and digitally sampled at 10 kHz (DT9816; Data Translation) under the control of a custom program, dbWave. The intensity of the response was measured by counting the number of spikes occurring during the 1 s of each recording. Stimulations were separated by at least 1 min. Spikes were not sorted by amplitude or shape, except noted otherwise, because extracellular recordings from taste receptors in
Figure 2. Strychnine-induced inhibition of the PER on the legs is more potent in a mixture with sugar than when presented separately, and bitter-cell ablation reduces the PR. A, Flies were stimulated with 100 mM sucrose and a bitter chemical during 5 s by gently touching one leg with a mixture (“mixed” presentation) or each tarsus separately with sugar on one side and bitter on the other side (“dissociated” presentation). The bitter stimulus was 100 mM sucrose plus 10 mM strychnine (suc + stry) or 100 mM sucrose plus 40 mM L-canavanine (suc + cana). B, wildtype flies respond more strongly in the PER to the mixed (white bars) than to the dissociated stimuli (striped bars) for suc + stry (p < 0.001) but not to sucrose plus L-canavanine. PRs are not different with both stimuli. C, D, We ablated cells expressing Gr66a and recorded the responses to the same stimuli in Gr66a–>DTI flies (red bars) and in the parental strains that have intact taste cells (Gr66a–Gal4 and UAS–DTI). C, PRs/PRs to mixed presentation. D, PRs/PRs to dissociated presentation (striped bars) of the same stimuli. Note the higher PR to suc + stry compared with the mixed stimulus. E, F, We also ablated cells expressing Gr33a and recorded the responses to these stimuli in Gr33a–>DTI flies (red bars) and Gr33a–Gal4 flies (with intact taste cells). UAS–DTI flies were not tested again, but the previous values are reported on the graph for convenience. E, PRs/PRs to the mixed presentation. F, PRs/PRs to the dissociated stimulii. Graph legends, statistical tests, and abbreviations are the same as in Figure 1.
partitioned interactions constructing slice F tests and evaluated pairwise differences within single effects with t tests. All these outputs were generated using the GLIMMIX procedure of SAS 9.2.

Results

PERs/PRs to stimulation of the labelum with mixtures of sugar/bitter molecules

Because l-canavanine and strychnine are considered as bitter for *Drosophila*, we expected that both substances would reduce PERs. When stimulated with sucrose, flies responded to sucrose with a strong PER (Fig. 1B). In response to 10 mM strychnine mixed with 0.1 mM sucrose, *Gr66a–DTI* flies and their parents showed a strongly reduced PER compared with 0.1 mM sucrose alone (p < 0.001, Fisher’s exact test), whereas l-canavanine had no effect. Only 10–15% of control flies exhibited a PER in response to 0.1 sucrose (Fig. 1B). Approximately 60–70% of the flies from control strains retracted their proboscis in response to sucrose plus strychnine or l-canavanine (p < 0.001). However, *Gr66a–DTI* flies responded to the mixture at a level similar to sucrose alone (p = 1).

All together, these data indicate that strychnine differs from l-canavanine when mixed with sugar, with strychnine inhibiting PER but not l-canavanine, whereas both substances induce the PR. Although PERs seem to be insensitive to the presence or absence of *Gr66a* cells, the PR is affected strongly by the ablation.

PERs/PRs to stimulation of the legs with mixed or dissociated solutions of sugar/bitter molecules

We then examined whether similar findings could be obtained by stimulating leg taste receptors. Stimulating these appendages provides us with an additional possibility, which is to present sugar and bitter separately (Fig. 2A). This was tested on *w1118* flies, on which we compared PERs/PRs to sugar or strychnine or l-canavanine by stimulating either one leg with the mixture (mixed presentation) or one leg with a bitter substance and the contralateral one with sugar (dissociated presentation; Fig. 2B).

In these conditions, we obtained a highly significant difference of PER between strychnine plus sucrose versus strychnine plus l-canavanine in the mixed presentation (p < 0.000, Fisher’s exact test, two tailed) but not in the dissociated presentation (p = 0.07). This suggests that the mixture of sugar and strychnine is more effective in preventing the initiation of a PER than when the stimuli (at the same concentration) are presented on different legs, even if we can expect to stimulate the same number of taste receptor neurons in both situations.

We then performed the same experiment in *Gr66a–DTI* flies and their parents (Fig. 2C,D). As expected, the strychnine-induced inhibition of the PER was more marked in the mixed mode than in the dissociated presentation mode in the control strains (Fig. 2C,D; p < 0.001) and *Gr66a–DTI* flies (p = 0.006). With l-canavanine, the situation was different as the PERs were similar in the two modes of presentation (Fig. 2C,D; p = 1). Although no difference was found in the PRs to sucrose plus strychnine and sucrose plus l-canavanine in both mode of presentations, we found a difference in the PR between *Gr66a–DTI* flies and their parents for sucrose plus l-canavanine (*Gr66a–Gal4, p = 0.007; UAS–DTI, p = 0.003) in the mixed mode and only between one control strain and *Gr66a–DTI* for the dissociated presentation.

Because *Gr66a* is not expressed ubiquitously in taste neurons detecting bitter chemicals on the tarsi (Ling et al., 2014), we also tested ablatinating cells expressing Gr33a, which is expressed in bitter-sensitive cells (Moon et al., 2009; Lee et al., 2010). A
difference in the PRs to sucrose plus l-canavanine between the control strains and Gr33a–DTI flies was observed (Fig. 2E,F) as in Gr66a–DTI flies. In addition, significant differences were observed in the PRs to sucrose plus strychnine in both presentation modes.

These observations suggest that taste cells expressing Gr66a and Gr33a play a role in triggering PRs (as found on the pro-

boscis) and also that Gr33a cells contribute to prevent PERs. However, in all strains tested here, the effect of strychnine was more potent on the PR when presented within a mixture than when presented separately, whereas the mode of presentation had no effect on the PR.

PERs/PRs to sugar and optogenetic activation of bitter-sensitive cells

To test whether activating bitter cells per se is sufficient to reduce sugar-induced PERs, we expressed ChR2 into Gr66a cells to activate them with light (Fig. 3A). In Gr66a–ChR2 flies, we observed a 22% reduction of the PER by BL (Fisher’s exact test, \(p = 0.024 \); Fig. 3A), although no effect was observed in the control strains (Gr66a–Gal4 and UAS–ChR2; \(p = 1.000 \)). We observed a significant increase of the PR in Gr66a–ChR2 flies stimulated with sucrose plus BL compared with sucrose alone (\(p = 0.011 \); Fig. 3A), although no effect was detected in control flies (\(p = 0.7445 \)).

Thus, the optogenetic activation of Gr66a cells of the legs and the proboscis exerts only a moderate inhibition of the PER but a marked effect on the PR, mimicking the effect of the dissociated presentation mode with strychnine (Fig. 2C,D) and of l-canavanine on responses on the labellum (Fig. 1B,C).

Behavioral responses of flies to sugar/bitter solutions in MultiCAFE and two-choice tests

Our observations on PERs/PRs indicate that strychnine mixed with sucrose plays a stronger role than strychnine alone, whereas

Figure 4. Flies with ablated bitter-sensitive cells are still able to avoid sucrose solutions containing strychnine in MultiCAFE and binary choice tests. A–D, Flies were given access to 5 μl capillary tubes filled with 100 μm sucrose and different concentrations of strychnine or l-canavanine. We measured the consumption of groups of 20 flies during 2 h in the dark (nanoliters per fly per hour), displaying the results as mean ± SEM. The differences between consecutive concentrations were determined using GLMM (* \(p < 0.05 \), ** \(p < 0.01 \), *** \(p < 0.001 \); nonsignificant values are not reported on the graph). A, We observed a significant reduction of consumption according to strychnine concentration (0, 0.1, 1, and 10 mM) mixed with 100 mM sucrose in Gr66a–DTI flies (with bitter-sensitive cells ablated) and in their parental lines (Gr66a–Gal4 and UAS–DTI) (\(n = 13 \) repetitions for each strain). B, We also observed a significant reduction of consumption according to l-canavanine (0, 0.1, 1, and 10 mM) mixed with 100 mM sucrose in the parental lines (UAS–DTI, \(n = 8 \); Gr66a–Gal4, \(n = 12 \)) but not in Gr66a–DTI flies (\(n = 13 \)). C–E, To confirm that the DTI could be replaced by another method of impairing cells expressing Gr66a, we used TeTxLC to selectively inactivate the synapses of these cells. C, We observed a significant reduction of consumption in response to strychnine mixed with sucrose in one parental line (Gr66a–Gal4, \(n = 10 \)) and Gr66a–DTI flies (\(n = 7 \)). D, We observed also a reduction of consumption in response to l-canavanine mixed with sucrose in the parental line tested (Gr66a–Gal4, \(n = 10 \)) but not in Gr66a–DTI flies (\(n = 10 \)). E, Flies expressing the TeTxLC were also tested in a two-choice test, in which groups of 80 flies were given access to agar wells filled with a red or blue food dye mixed with either 1 mM sucrose or 5 mM sucrose plus 30 mM l-canavanine or 10 mM strychnine. After feeding 2 h in the dark, we measured the proportion of flies with their abdomen colored in blue, red, or pink to compute a PI (PI = ([n_blue + n_pink]/[n_blue + n_pink + n_red]) and performed the same experiment after inverting the dyes (black bars, blue vs red; white bars, red vs blue; \(n = 4 \) repetitions for each condition). The statistical significance of the results was evaluated with unpaired Student’s t-tests with unequal variances. We observed a strong reduction of PI when sugar was mixed with strychnine or l-canavanine in the parental lines (\(p < 0.0001 \)). In Gr66a–TeTxLC flies, we observed also a strong reduction of the consumption in the presence of strychnine (\(p < 0.0001 \)) but not in l-canavanine (\(p = 0.19 – 0.13 \)). The data are represented as the mean ± SEM using the same conventions as in other figures for indicating the statistical significance level. suc, Sucrose; cana, l-canavanine; nico, nicotine; caff, caffeine; lob, lobeline; stry, strychnine; den, denervation.
Figure 5. Bitter chemicals differ in their capacity to inhibit sucrose detection. A, Representative sample of strychnine-induced inhibition of the responses to sugar in taste sensilla obtained with a tip-recording electrode. Top trace shows the first 500 ms of a recording in which one neuron is firing vigorously when stimulated with 0.1 M sucrose (+ 100 mM TCC used as an electrolyte). The middle trace shows the activation of another neuron in response to 10 mM strychnine. The bottom trace shows the firing activity recorded in response to a mixture of these two stimuli with much less action potentials than expected if the two neurons would react to sugar and strychnine independently. B, Location of the taste sensilla mostly recorded from in this study, using a map notation introduced by Hiroi et al. (2002) and cellular composition of the sensilla tested. I5 and l6 sensilla host four taste cells (C) and s6 sensilla (D), whereas i9 sensilla host only two taste cells (E). These taste cells are labeled according to their sensitivity as S (sugar-sensitive), W (water-sensitive), L1 (low salt-sensitive), and L2 (bitter-sensitive). Bitter chemicals (but not all) (Figure legend continues.)
Electrophysiological responses of labellar taste sensilla to sucrose mixed with different bitter molecules

To examine the cellular basis of these behavioral observations, we looked at the electrophysiological responses of taste sensilla stimulated with sucrose, with a bitter molecule, and with their mixture. As noted in previous studies (Meunier et al., 2003a; Jeong et al., 2013), whereas sucrose activates a cell and strychnine activates another cell, when the two chemicals are mixed, the resulting response is much less than expected by simply summing the activity of the two cells to each chemical (Fig. 5A).

We examined taste sensilla of the proboscis (Fig. 5B) that are mapped and identified according to their length and position (Shanbhag et al., 2001; Hiroi et al., 2002). Short-type sensilla (s-type) and long-type sensilla (l-type) house four taste neurons, whereas intermediate-sized (i-type) sensilla house only two taste neurons. In s-type sensilla, each taste neuron responds to different groups of molecules: sugars (Hiroi et al., 2002, 2004), water (Cameron et al., 2010; Chen et al., 2010), salts (Meunier et al., 2003b) or pheromones (Thistle et al., 2012), and bitter chemicals (Hiroi et al., 2002; Dahanukar et al., 2007; Weiss et al., 2011; Fig. 5C–E, cells S, W, L1, and L2, respectively). In i-type sensilla, three of these cells are present, but none is responding to bitter chemicals (Hiroi et al., 2002; Weiss et al., 2011). In i-type sensilla, one neuron responds to sugars whereas the other responds to bitter molecules (Hiroi et al., 2004; Fig. 5E, cells S and L2, respectively).

First, we examined whether all bitter chemicals would inhibit sugar-sensitive cells by recording the responses of taste sensilla 15–16, s6, and i9 to sucrose, and then to sucrose mixed with a bitter molecule (Fig. 5F–H). An additional stimulation with sucrose was made to ensure that cells were not intoxicated. Sensilla for which the response to the third stimulation with sucrose was suppressed were discarded. This was to ensure that any observed reduction in response to sucrose when mixed with bitter molecules was attributable to a sensory inhibition rather than an enduring toxic effect. Unless otherwise noted in this series of measurements and in all other experiments, we report on the total number of spikes detected during the first second of each recording. The spikes were not sorted and thus could represent the activity of several neurons.

In 15–16 sensilla, we observed a reduction of activity when 100 mM sucrose was mixed with 1 mM lobeline, strychnine, denatonium, or escin (Wilcoxon’s paired test, p = 0.005, 0.028, 0.043, and 0.043; n = 10, 6, 5, and 5 respectively; Fig. 5F). We did not observe a statistically significant reduction of activity with 1 mM caffeine, 1 mM nicotine, or 40 mM l-canavanine (n = 10, 6, and 5 respectively; Fig. 5F). Similar results were obtained with s6 sensilla (n = 4–10), in which only strychnine was found to inhibit sugar detection to a statistically significant level (p = 0.04, n = 5; Fig. 5G). In i9 sensilla (n = 10), l-canavanine, strychnine, and lobeline were found to inhibit sugar detection (p = 0.008, 0.005, and 0.005, respectively; Fig. 5H).

We further examined the effect of increasing concentrations of strychnine on the response to 100 mM sucrose in these sensilla (Fig. 5I–K). We observed a consistent reduction in response to sucrose when mixed with 10 mM strychnine in l6 (Kruskall–Wallis test, p = 0.001), i9 (p = 0.04), and s6 sensilla (p = 0.003). In all three sensilla, the response to sucrose at the end of the experiment was not statistically different from the response to sucrose at the beginning of the series (p = 1.000).
with a GLIMMIX procedure. Abscissa, Log10 of the molar concentration. **p < 0.001.

Figure 6. Strychnine inhibition of sucrose responses persists in labellar s6, i9, and i5 sensilla of Gr66a–DTI flies. Extracellular spiking activities recorded from sensilla on the labelium (mean ± SEM) in s6 (left), i5 (middle), and i9 (right) sensilla in Gr66a–DTI (red squares) and the parental lines (triangle, UAS–DTI; circle, Gr66a–Gal4). A–C, Responses to 0.01, 0.1 and 1 mM sucrose were dose dependent in all strains in s6 sensilla (A; Gr66a–DTI, n = 6; Gr66a–Gal4, n = 5; UAS–DTI, n = 5), i5 sensilla (B; n = 7, 6, and 5, respectively), and i9 sensilla (C; n = 11, 6, and 5, respectively). D–G, Responses to 0.001, 0.1, and 10 mM strychnine were reduced in s6 sensilla (D) of Gr66a–DTI flies (n = 7, 6, and 5, respectively) but not in i5 sensilla (E) that are not activated in response to bitter chemicals (n = 6, 5, and 6, respectively) and in i9 sensilla (F) that are not sensitive to strychnine (n = 10, 5, and 5, respectively). F, To check that the bitter-sensitive neuron was ablated in i9 sensilla, we tested the responses to 0.001, 0.1, and 10 mM caffeine (n = 11, 5, and 5, respectively). H–J, Responses to a mixture of 0.1 M sucrose and 0.001, 0.1, and 10 mM strychnine in s6 sensilla (H; n = 6, 6, and 5, respectively), i5 sensilla (I; n = 7, 6, and 5, respectively) and i9 sensilla (J; n = 11, 5, and 5, respectively). A dose-dependent effect of strychnine was found in all three sensilla in the three strains. These data were analyzed with a GLIMMIX procedure. Abscissa, Log10 of the molar concentration. **p < 0.01, ***p < 0.001.

Figure 7. Strychnine inhibition of the responses to sucrose persists in tarsal f5b and f5s sensilla of Gr66a–DTI flies. A, Schematic drawing of the position of f5b and f5s sensilla on the fifth tarsus of female flies. According to Ling et al. (2014), only f5s express Gr66a, which means that f5b should remain functional in Gr66a–DTI flies. B, C, Extracellular spiking activities (mean ± SEM) recorded in responses to strychnine and L-canavanine in Gr66a–DTI (red bars), UAS–DTI (gray bars), and Gr66–GAL4 (white bars) flies. B, In f5b sensilla, the responses of the three strains are equivalent with respect to 10 mM strychnine (Gr66a–DTI vs UAS–DTI, p = 0.55 and Gr66a–DTI vs Gr66–GAL4, p = 0.50, n = 4–7; Kruskall–Wallis test) and 40 mM L-canavanine (Gr66a–DTI vs UAS–DTI, p = 1.00 and Gr66a–DTI vs Gr66–GAL4, p = 0.76, n = 4–8). C, In f5s sensilla, we found a significant difference in the responses to 10 mM strychnine between Gr66a–DTI and the parental lines (Gr66a–DTI vs Gr66–GAL4 + UAS–DTI, p = 0.011, n = 4–6) and 40 mM L-canavanine (Gr66a–DTI vs Gr66–GAL4 + UAS–DTI, p = 0.015, n = 3–7). D, E, We further tested the responses to 0.1 M sucrose mixed with strychnine (0, 0.001, 0.1, and 10 mM) in Gr66a–DTI (red squares), UAS–DTI (white triangle), and Gr66–GAL4 (white circle) flies. In f5b sensilla (D) and f5s sensilla (E) in the three genotypes (n = 4–10) in which we found a significant effect of concentration in f5b sensilla (p < 0.001, GLIMMIX procedure) and f5s sensilla (p = 0.0011, GLIMMIX). *p < 0.05, ***p < 0.001. cana, L-Canavanine; stry, strychnine; suc, sucrose.

Electrophysiological responses of labellar taste sensilla of Gr66a–DTI flies

Our behavioral observations together with our initial electrophysiological recordings suggest that strychnine inhibits sugar-detection cells and activates bitter-sensitive cells, whereas L-canavanine mostly activates bitter-sensitive cells. To determine whether bitter-sensitive neurons are required for sugar-sensitive neuron inhibition, we recorded the responses of flies in which cells expressing Gr66a are ablated, using the same genetic construction used in
the behavioral experiments (Gr66a>DTI), in sensilla with four taste neurons (l5, s6), and with two neurons (i9; Fig. 5C–E).

With sucrose (Fig. 6A–C), we observed a dose-dependent response in Gr66a>DTI flies and their parental lines in all sensilla tested (p < 0.0001, GLMM). With strychnine (Fig. 6D,E,G), a dose-dependent response was found in the parental lines in s6 sensilla (p < 0.001, GLMM) but not in l5 or i9 sensilla, in which strychnine had been documented to elicit very low responses (Weiss et al., 2011). In Gr66a>DTI flies, the responses to strychnine was suppressed in s6 sensilla (p = 0.12, GLMM). To check whether i9 sensilla were responsive to bitter chemicals, we tested them with caffeine (Fig. 6F).

In response to mixtures of 0.1 M sucrose and strychnine (Fig. 6H–J), we found a reduction of the spiking activity in all sensilla, in the control strains and Gr66a>DTI flies (p < 0.001, GLMM).
These observations confirm that sugar-induced inhibition is present in sensilla that are missing cells activated by strychnine either naturally as in l-type sensilla or when bitter-sensitive cells (expressing Gr66a) are ablated.

Electrophysiological responses of leg taste sensilla of Gr66a/DTI flies

We also recorded from taste sensilla on the legs, first, to confirm that strychnine inhibits sugar detection and, second, to further establish that some bitter-sensitive neurons are not ablated on the legs in Gr66a>DTI flies. We selected sensilla f5b and f5s (Fig. 7A) because Gr66a is expressed only in f5s, whereas Gr33a is expressed in both (Ling et al., 2014). Therefore, we expected to find in Gr66a>DTI flies a suppression of the responses to strychnine and l-canavanine in f5s but not in f5b.

First, we checked that these sensilla responded to l-canavanine and strychnine and reacted differently to the ablation of Gr66a cells (Fig. 7B, C). The response to strychnine and to l-canavanine was significantly different in f5s sensilla in Gr66a>DTI flies compared with the parental lines (Gr66a>DTI vs Gr66a–Gal4 + UAS–DTI; strychnine, p = 0.011; l-canavanine, p = 0.015, Kruskall–Wallis test; Fig. 7C) but not in f5b sensilla (strychnine, p = 0.558 for Gr66a–Gal4 and p = 1.000 for UAS–DTI; no responses were recorded with l-canavanine; Fig. 7B).

Then, we looked at the response to mixtures of strychnine with sucrose (Fig. 7D, E). Strychnine concentration had a highly significant effect in all strains because it inhibited sugar detection in both the parental lines and Gr66a>DTI flies compared with f5b and f5s sensilla (p < 0.0001, GLMM).

These data confirm that strychnine inhibits sugar detection in sensilla other than on the labellum and that the construction Gr66a>DTI does not completely abolish the detection of strychnine in all sensilla of the tarsus because f5b sensilla keep their sensitivity toward strychnine (Fig. 7B).

Electrophysiological responses of taste sensilla stimulated with sucrose during optogenetic activation of taste cells expressing Gr66a

Although our previous observations indicate that bitter-sensitive cells are not necessary for inhibiting the detection of sugars, it does not rule out the possibility that activating a bitter-sensing cell could reduce firing in adjacent sugar-sensitive neurons. Such a mechanism has been demonstrated recently in the olfactory system of Drosophila, in which the transient activation of an olfactory receptor neuron (ORN) can inhibit the sustained activity of a neighboring ORN (Su et al., 2012).

We asked whether optogenetic activation of bitter-sensing cells could inhibit the response to sucrose in i9/i8 sensilla of Gr66a>ChR2 flies. In the absence of optogenetic activation, sucrose induced a tonic response in sugar-sensitive cells (Fig. 8B) but not in bitter-sensitive cells (Fig. 8D). In the presence of light, bitter-sensitive cells displayed a phasic–tonic excitation (Fig. 8A, D, E) that did not affect the time course of the responses to sugar in the sugar-sensitive cells (Fig. 8B–D).

Electrophysiological responses of sugar-sensitive taste neurons activated optogenetically in the presence of strychnine

We then asked whether strychnine inhibits sugar-induced responses by interfering with general cellular excitation or whether this inhibition is specific to sugar transduction. To address this question, we used Gr64f>ChR2 flies. If strychnine induces a general inhibition of the sugar-sensitive neurons, we would expect it to reduce the response of Gr64f>ChR2 neurons to BL.

We stimulated i9 and 15-17 sensilla with BL and strychnine (Fig. 9A). No significant effect of strychnine concentration on BL response was observed (one-way ANOVA, p = 0.79 for i5-17 and p = 0.813 for i9). We found a significant difference between the response of 15–17 and i9 when stimulated with TCC in the presence and absence of BL (Fisher’s LSD test, p < 0.001 for i9 and p < 0.001 for i5–17). However, in these flies, strychnine inhibited responses to sucrose (Kruskall–Wallis ANOVA by ranks, p < 0.001; Fig. 9B). We infer from this that strychnine does not inhibit sugar-sensing cells but that it directly interferes with sugar-specific reception or transduction pathways.
Discussion
In this work, we evaluated the respective roles of two pathways contributing to the detection of bitter compounds, the activation of bitter-sensitive cells, and the inhibition of sugar detection. The importance of inhibiting sugar detection is exemplified by the observation that flies deprived of bitter-sensitive cells retain the capacity to avoid feeding from sugar solutions containing strychnine almost as well as normal flies. Although the activation of bitter-sensitive cells induce active aversive reactions, such as the PR, sugar-sensing inhibition is very effective in preventing feeding from appetitive solutions when spiked with bitter chemicals. We established that chemicals such as strychnine, lobeline, denatonium, and escin inhibit sugar detection, whereas other chemicals such as L-canavanine, caffeine, and nicotine were not effective at the concentration tested. Given the importance of sugar-sensing inhibition, these observations are consistent with former behavioral observations showing that strychnine and lobeline were more potent anti-feedants than caffeine and nicotine in MultiCAFE behavioral observations showing that strychnine and lobeline were sensing inhibition, these observations are consistent with former

Our data establish that sugar-sensing cell inhibition is independent of bitter-cell activation and that this inhibition is specific to sugar detection. First, sugar responses are inhibited by strychnine in all sensilla of the proboscis independently of the presence of bitter-sensing cells in those sensilla. This is the case for 1-type sensilla that are not equipped with a bitter-sensitive cell and for 9 sensilla that house only two chemosensory cells, in which the bitter-sensitive cell can be ablated genetically by expressing a toxin in it. Furthermore, if bitter-sensing cells are activated by BL (using ChR2 ectopically expressed in Gr66a cells), the response to sucrose is not affected. This indicates that sugar inhibition can occur in the absence of bitter cells.

Second, sugar-sensitive cells are inhibited by molecules different from those that stimulate bitter-sensitive cells. Strychnine and lobeline (as well as quinine; Sellier et al., 2011) are very potent inhibitors, whereas L-canavanine, caffeine, and nicotine are less effective. This confirms that bitter activation and sugar inhibition are two separate mechanisms, in agreement with the observation that bitter-sensitive gustatory receptors are not expressed in sugar-sensitive cells (Thorne et al., 2004; Marella et al., 2006; Hiroi et al., 2008; Weiss et al., 2011).

Third, when sugar-sensitive cells are activated by BL (using ChR2 ectopically expressed in Gr64f cells), strychnine does not inhibit the response to BL. This indicates that strychnine does not depress the excitability of sugar-sensing cells and suggests that it interferes specifically with sugar reception or transduction pathways. Thus, our data suggest that sugar-sensing cells are equipped with transduction pathways sensitive to bitter chemicals.

Recently, it has been demonstrated that an OBP, OBP49a, is required for sugar inhibition by bitter chemicals (Jeong et al., 2013). OBP49a is expressed by an accessory cell of most gustatory sensilla and is secreted in the sensillum lymph. Its loss results in reduced sugar inhibition or avoidance behavior in the presence of bitter chemicals. OBP49a directly binds quinine and denatonium, both of which are sweet taste inhibitors. Biochemical and genetic evidences show that OBP49a is closely associated with the sugar receptor Gr64a, indicating that OBP5s may bind bitter and bring them to the immediate proximity of sugar gustatory receptors (Jeong et al., 2013). The presence of OBPs may serve as a mechanism to amplify the sensitivity of sugar neurons by chaperoning the interaction. The authors suggest an alternative mechanism analogous to the OBP LUSH, which activates a pheromone receptor (OR67d) when loaded with the ligand cis-vaccenyl acetate (eVA; Laughlin et al., 2008). However, a recent report suggests that eVA induces olfactory receptor activity in the absence of LUSH (Gomez-Diaz et al., 2013). Our study and findings on gusta-
tory receptors by Jeong et al. (2013) raise the intriguing possibility that bitter chemicals directly interact with sugar gustatory receptors. Although sugar-sensing inhibition is an intriguing property of sugar-detecting cells, it also plays a decisive role in allowing flies to avoid mixtures spiked with bitter chemicals. This was very clear when comparing the feeding responses of flies given access to sugar mixed with either strychnine or L-canavanine. Although L-canavanine detection is completely suppressed after Gr66a-cell ablation, strychnine is still detected in these flies. These observations suggest that sugar-sensing inhibition plays a major role in most feeding behavior paradigms used to test feeding activities in flies, including the PER.

PER experiments on flies in which Gr66a cells were ablated or that were expressing ChR2 has allowed us to better understand the interplay of bitter detection and mixture suppression. Control strains, UAS–DTI, and Gr66a–Gal4 flies extend their proboscis less frequently in response to strychnine mixed with sucrose than when strychnine and sucrose were presented on separate legs. Gr66a–DTI flies avoid extending their proboscis in the presence of strychnine and are impaired in retracting their proboscis. L-Canavanine does not inhibit the PER but triggers a subsequent PR that disappears in Gr66a-ablated flies.

In Gr66a–ChR2 flies, the PER is reduced by ~22% when flies are dually stimulated with sucrose and BL compared with sucrose alone. This level of inhibition is comparable with the responses of flies presented with sucrose and strychnine in the dissociated PER paradigm. The activation of bitter-sensing cells through remote activation or by stimulating with strychnine in Gr66a–ChR2 or Gr64f–ChR2 flies, respectively, triggers the PR (Fig. 4). Our observations are consistent with the hypothesis that the PER is strongly modulated by sugar-sensing inhibition, whereas the PR is triggered through the activation of bitter-sensing cells.

We postulate that sugar inhibition may contribute to adaptation of insects to their environment and should be subjected to selection pressure. One possibility is that sugar-sensing inhibition could be associated with bitter molecules that are particularly toxic for the animals because this mechanism seems to be hardwired, whereas the aversion to bitter chemicals that are detected only by bitter-sensitive cells could be modulated at the level of the synapses by a variety of mechanisms. A partial support to this hypothesis comes from the observation that camphor aversion can be modulated whereas quinine aversion is not in relation to the relative toxicity of these compounds (Zhang et al., 2013).

We speculate that different adaptation strategies may exist across insect species, i.e., the same molecule could activate bitter cells and/or inhibit sugar cells differently. Alkaloids such as strychnine inhibits the detection of sugars in Lepidoptera larvae (Schoonhoven and van Loon, 2002) and sugar alcohols (but not sucrose) in Lymantria dispar (Martin and Shields, 2012). Contrary to Drosophila, the grasshopper Schistocerca americana does not detect L-canavanine by excitation but only by sugar-sensing inhibition (Chapman et al., 1991). In honeybees, sugar-sensing inhibition might be even more developed than bitter detection (de Brito Sanchez, 2011) because honeybees possess very few gustatory receptors.

In summary, our results suggest strongly that detection of noxious compounds involves at least two independent mechanisms: (1) the activation of bitter-sensitive cells; and (2) mixture suppression within sugar-sensitive cells. This inactivation mechanism may contribute to simplify the processing of messages sent to the brain by the taste receptors when confronted with conflicting messages (Fig. 10). Our observations do not challenge the view that taste coding involves labeled lines, but they should certainly encourage us to revise our view of the sensory space encoded by each taste quality.

References

J Vis Exp 25:e1133. CrossRef Medline

