Dual Mechanism for Bitter Avoidance in Drosophila
Alice Sarah French, Marie-Jeanne Sellier, Ali Agha Moutaz, Alexandra Guigue, Marie-Ange Chabaud, Pablo D. Reeb, Aniruddha Mitra, Yves Grau, Laurent Soustelle, Frederic Marion-Poll

To cite this version:

HAL Id: hal-01544974
https://hal-agroparistech.archives-ouvertes.fr/hal-01544974
Submitted on 27 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Behavioral/Cognitive

Dual Mechanism for Bitter Avoidance in Drosophila

Alice Sarah French,1,2,7* Marie-Jeanne Sellier,1,2* Moutaz Ali Agha,1,2 Alexandra Guigue,1,2 Marie-Ange Chabaud,1,* Pablo D. Reeb,3 Aniruddha Mitra,7 Yves Grau,4,5,6 Laurent Soustelle,4,5,6 and Frédéric Marion-Poll1,2,7

1Institut National de la Recherche Agronomique, Unité Mixte de Recherche (UMR) Institut d’Ecologie et des Sciences de l’Environnement de Paris, F-78026 Versailles, France; 2AgroParisTech, Département Sciences de la Vie et Santé, F-75231 Paris, France; 3Universidad Nacional del Comahue, Facultad de Ciencias Agrarias, Departamento de Estadística, RA-8303 Cinco Saltos, Argentina; 4Centre National de la Recherche Scientifique (CNRS), UMR 5203, Institut de Génomique Fonctionnelle, F-34094 Montpellier, France; 5Institut National de la Santé et de la Recherche Médicale, U661, F-34094 Montpellier, France; 6Universités de Montpellier 1 and 2, UMR 5203, F-34094 Montpellier, France, and 7CNRS, Unité mixte de Recherches UMR 9191, Evolution, Génomes, Comportement, Ecologie F-91198 Gif-sur-Yvette, France.

In flies and humans, bitter chemicals are known to inhibit sugar detection, but the adaptive role of this inhibition is often overlooked. At best, this inhibition is described as contributing to the rejection of potentially toxic food, but no studies have addressed the relative importance of the direct pathway that involves activating bitter-sensitive cells versus the indirect pathway represented by the inhibition of sugar detection. Using toxins to selectively ablate or inactivate populations of bitter-sensitive cells, we assessed the behavioral responses of flies to sucrose mixed with strychnine (which activates bitter-sensitive cells and inhibits sugar detection) or with L-canavanine (which only activates bitter-sensitive cells). As expected, flies with ablated bitter-sensitive cells failed to detect L-canavanine mixed with sucrose in three different feeding assays (proboscis extension responses, capillary feeding, and two-choice assays). However, such flies were still able to avoid strychnine mixed with sucrose. By means of electrophysiological recordings, we established that bitter molecules differ in their potency to inhibit sucrose detection and that sugar-sensing inhibition affects taste cells on the proboscis and the legs. The optogenetic response of sugar-sensitive cells was not reduced by strychnine, thus suggesting that this inhibition is linked directly to sugar transduction. We postulate that sugar-sensing inhibition represents a mechanism in insects to prevent ingesting harmful substances occurring within mixtures.

Key words: behavior; bitter; Drosophila; electrophysiology; mixture interaction; sweet

Introduction

Animals, including insects, detect a number of chemicals as aversive via specialized taste cells (Yarmolinsky et al., 2009). These aversive chemicals define a sensory space usually described as “bitter” by analogy with human sensation. Bitter taste is thought to contribute to protecting animals against ingesting potentially toxic molecules (Glendining, 2002, 2007). Accordingly, omnivorous/polyphagous animals possess a large panel of bitter taste receptors, whereas animals specialized on a restricted diet have few, because they are potentially exposed to a lesser variety of toxic molecules. This rule has been observed in vertebrates (Wooding, 2005; Dong et al., 2009; Jiang et al., 2012; Hong and Zhao, 2014; Li and Zhang, 2014) and insects (McBride and Arguello, 2007; Richards et al., 2008; Kirkness et al., 2010), with a few exceptions (Wanner and Robertson, 2008; Engsontia et al., 2014). Animals, including insects, also possess “sweet” receptors expressed in specific taste cells that detect molecules triggering food acceptance (Zhao et al., 2003; Chandrashekar et al., 2006; Yarmolinsky et al., 2009). These two populations of taste cells that sense either sugar or bitter chemicals directly trigger feeding or aversion if activated (Marella et al., 2006; Hiroi et al., 2008; Gordon and Scott, 2009), whereas disrupting one of them impairs the corresponding behavior (Wang et al., 2004). This suggests that taste is encoded by labeled lines and supports the view that the final decision is taken after the brain has weighed information from these two lines (Masek and Scott, 2010).

However, each taste modality is not insensitive to stimuli from other modalities. For example, bitter chemicals inhibit sugar detection in insects of different groups (Morita, 1959; Dethier, 1980, 1987; Schoonhoven, 1982; Dethier and Bowden, 1989, 1992; Chapman et al., 1991; Schoonhoven and Liner, 1994), including Drosophila (Meunier et al., 2003a; Lee et al.,
Table 1.

<table>
<thead>
<tr>
<th>Fly strain</th>
<th>Short-hand name</th>
<th>Significance to the study</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>w1118</td>
<td>Reference strain carrying the mutation white</td>
<td>K. Scott</td>
</tr>
<tr>
<td>Gr66a-Gal4</td>
<td></td>
<td>Driver for cells expressing Gr66a (bitter-sensitive)</td>
<td>K. Scott</td>
</tr>
<tr>
<td>Gr64f-Gal4</td>
<td></td>
<td>Driver for cells expressing Gr64f (sugar-sensitive)</td>
<td>K. Scott (Wang et al., 2004)</td>
</tr>
<tr>
<td>G33a-Gal4</td>
<td></td>
<td>Driver for cells expressing G33a (bitter-sensitive)</td>
<td>J. Carlson (Dahanukar et al., 2007)</td>
</tr>
<tr>
<td>UAS–DTI</td>
<td>Reporter expressing DTI to kill cells</td>
<td>J. Carlson</td>
<td></td>
</tr>
<tr>
<td>w*; UAS–TeTxLC,tnt</td>
<td>Report er expressing TeTxLC to inactivate synaptic transmission</td>
<td>K. Scott (Wang et al., 2004)</td>
<td></td>
</tr>
<tr>
<td>w*; UAS–H134R–ChR2</td>
<td>Ex press ChR2 into Gr64f cells</td>
<td>Bloomington Drosophila Stock Center strain BL 28997</td>
<td></td>
</tr>
<tr>
<td>Gr64f–Gal4/UAS–ChR2</td>
<td>Express ChR2 into Gr64f cells</td>
<td>Bloomington Drosophila Stock Center strain BL 28995</td>
<td></td>
</tr>
<tr>
<td>Gr66a–Gal4/UAS–ChR2</td>
<td>Express ChR2 into Gr66a cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gr64f–Gal4/UAS–DTI</td>
<td>Express DTI into Gr66a cells to kill them</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gr66a–Gal4+/UAS–TeTxLC/+</td>
<td>Express the TeTxLC into Gr66a cells to inactivate their synaptic transmission</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2010, 2012; Sellier and Marion-Poll, 2011; Jeong et al., 2013) in which other interactions were described recently, such as between sugars and acids (Charlu et al., 2013; Chen and Amrein, 2014). Whereas the molecular basis of bitter suppression of sugar detection is still under scrutiny and may involve odorant binding proteins (OBPs; Jeong et al., 2013; Swarup et al., 2014), the behavioral role of such interactions has been considered rarely (König et al., 2014).

We examined here to what extent bitter suppression of sugar detection influences behavioral choices in adult Drosophila. We demonstrate that the activation of bitter-sensitive cells does not suffice to inhibit proboscis extension responses (PERs) and that complete inhibition of the PER requires shutting off the signal conveyed by sugar-sensitive cells. Using behavior and optogenetic techniques, we show that the simultaneous activation of bitter-sensitive cells along with the inhibition of sugar detection is necessary to elaborate a proper response to ambiguous mixtures of tastants. We further show that sugar-sensitive cell inhibition is a specific property of sugar transduction. We postulate that sugar-sensing inhibition complements canonical bitter detection to prevent the ingestion of harmful substances when mixed with beneficial substances.

Materials and Methods

Chemicals. Sucrose, KCl, l-canavanine, caffeine, lobeline, escin, nicotine, strychnine, denatonium, tricholine citrate (TCC), erioglaucine, sulforhodamine B, and all trans-retinal were from Sigma-Aldrich. Brilliant blue FCF was from Tokyo Kasei.

Flies. Flies were maintained on a standard cornmeal agar medium at 25°C and 80% humidity on a 12 h light/dark cycle. Unless noted otherwise, we used 2- to 5-d-old adults. Insects subjected to behavioral tests were starved for 24 h before the experiment.

To manipulate specific populations of taste cells, we used the UAS–Gal4 system (Brand and Perrimon, 1993). Bitter-sensitive cells were targeted using Gr66a–Gal4 (Wang et al., 2004). Sugar-sensitive cells were addressed with Gr64f–Gal4 (Dahanukar et al., 2007). We crossed these flies with flies carrying a secondary transgene activated by GAL4 in the progeny. As a secondary transgene, we used a diphtheria toxin (UAS–DTI; Wang et al., 2004) to ablate cells expressing Gr66a in the progeny (called Gr66a–DTI throughout text). We also used the tetanus toxin light chain (TeTxLC), which impairs neurotransmission at synapses by degrading synaptobrevin (Sweeney et al., 1995). In the progeny of Gr66a–Gal4 flies crossed with UAS–TeTxLC flies and Gr66a–Gal4+/UAS–TeTxLC/+ (mentioned as Gr66a-->TeTxLC throughout text), bitter-sensoneurons are inactive. To express a channel rhodopsin into taste neurons, UAS–ChR2 flies were crossed with flies carrying Gr66a–Gal4 (Wang et al., 2004) or Gr64f–Gal4 (Dahanukar et al., 2007). In the progeny (mentioned as Gr66a-->ChR2 and Gr64f-->ChR2 throughout text), blue light (BL) induces a spiking activity in the neurons expressing channelrhodopsin 2 (ChR2). These flies and the control strains were raised on medium supplemented with 1 mM all trans-retinal (Schroll et al., 2006; Hornstein et al., 2009) and kept in darkness.

w1118, Gr66a–Gal4, and UAS–DTI strains were generously provided by Kristin Scott (University of California at Berkeley, CA) and Gr64f–Gal4 flies by John Carlson (Yale University, New Haven, CT). UAS–TeTxLC and UAS–ChR2 flies were obtained from the Bloomington Drosophila Stock Center (strains BL 28997 and BL 28995, respectively). A list of the flies used in this study is provided in Table 1. In all experiments, we compared flies carrying both transgenes (UAS and GAL4) to their parents carrying only one transgene and designed hereafter as control flies.

Proboscis responses (PER and proboscis retraction) after stimulation of labellar sensilla. To stimulate labellar taste sensilla, flies (1–5 d old) were prepared according to Shiraiwa and Carlson (2007). Before the experiment, flies were starved for 24 h by placing them into a vial with humid cotton. Flies were introduced into the cut ends of 200 μl micropipette tips so that the head was protruding and the proboscis was free to move. The proboscis sensilla of the labellum were stimulated by gently touching the labellum during 2 s with the fine tapering end of a strip of filter paper, soaked with the test solution (Fig. 1A); if the fly extended its proboscis, the stimulus was removed immediately to prevent drinking. We scaled the PER of the fly as 1 if the proboscis was fully extended within 2 s after the contact and as 0 otherwise. We also monitored proboscis retraction (PR) and scaled it as 1 if the fly retracted the proboscis (and maintained retraction) within 5 s after having fully extended it and 0 otherwise (Fig. 1A; Dethier, 1980; Mitri et al., 2009).

We used this method to test whether ablating cells expressing Gr66a affects the responses to sugar mixed with strychnine or l-canavanine, which are both aversive for flies (Meunier et al., 2003a; Hiroi et al., 2004; Mitri et al., 2009; Sellier et al., 2011; Lee et al., 2012; Devambex et al., 2013). Strychnine is an alkaloid molecule, whereas l-canavanine is a toxic nonprotein amino acid (Rosenthal, 2001; Kool, 2005). Both substances activate bitter-sensitive cells in Drosophila and do not activate other taste cells (Meunier et al., 2003a; Hiroi et al., 2004; Lee et al., 2012). Therefore, it is expected that flies deprived of their bitter-sensitive cells should become less sensitive to these substances. Furthermore, there should be a discrepancy between the effect of bitter-sensitive cell ablation on l-canavanine and strychnine avoidance given that the former does not strongly inhibit sugar-sensitive cells (Jeong et al., 2013).

The sequence of stimulation was water, sucrose, test solution (strychnine plus sucrose, l-canavanine plus sucrose, or sucrose alone), sucrose, and water, each separated by 2 min. The responses to the test stimulus were recorded from only those flies that responded to the first sucrose presentation and that did not respond to water. The concentrations of chemicals used were 0.1 mM sucrose, 10 mM strychnine plus 0.1 mM sucrose, and 40 mM l-canavanine plus 0.1 mM sucrose.

Proboscis responses (PER and PR) after stimulation of leg sensilla. To stimulate taste sensilla of the prothoracic legs, four to five flies (narcotized with ice) were disposed on a microscopic slide, placed on pads of adhesive clay (UHU yellow patafix), and restrained on their dorsum with fine strips of tape. They were left to recover from the manipulation at 25°C and 80% humidity for 2 h. Before the experiment, flies were fed water to satiation, and their legs were washed with water. The legs were
stimulated by touching them gently for 5 s with a toothpick dipped previously into a test solution. If the solution applied was a mixture, only one leg was touched (Fig. 2A). If bitter and sugar solutions were applied separately, one leg was stimulated with sugar and the contralateral leg was stimulated by touching them gently for 5 s with a toothpick dipped gently for 5 s with a toothpick dipped in 0.1 M sucrose (suc) or 0.1 M sucrose plus 10 mM strychnine (suc + stry) or 0.1 M sucrose + 40 mM l-canavanine (suc + cana). The values are displayed as the frequency of flies that responded. 95% binomial confidence intervals, and asterisks indicate the significance values from a Fisher’s exact test when comparing strains (*p < 0.05,**p < 0.01, ***p < 0.001). The respective number of flies tested is displayed as numbers between the two graphs.

This method was used to evaluate whether the mode of presentation of the stimuli had an influence on PER/PR and whether ablating different channels are activated by light at a wavelength of 488 nm (ChR2 flies, expressed ChR2 into either bitter-sensitive cells (using Gr66a-Gal4) or sugar-sensitive cells (using Gr64f-Gal4)) were tested to evaluate whether the optogenetic activation of one class of taste cells could be modulated by the chemical activation of the other class.

To evaluate the effect of activating bitter-sensitive cells (expressing Gr66a) on PERs/PRs to sucrose, we stimulated Gr66a->ChR2 flies and their parental lines with 0.1 M sucrose alone or concurrently with a spot of BL during 5 s (Fig. 3A). The order of stimulation was sucrose, water, test (sucrose or sucrose plus BL), water, and sucrose. To evaluate the effect of strychnine on the PERs/PRs to the optogenetic activation of sugar-sensitive cells, we stimulated Gr64f->ChR2 flies with a spot of BL during 5 s and presented 10 mM strychnine concurrently (Fig. 3B). The order of stimulation was BL, BL plus water (control for tactile stimulation), test (BL or BL plus strychnine), water, and BL plus water. Gr64f->ChR2 flies that did not respond to the first BL stimulation and to BL plus water were discarded. The control strains were unresponsive to BL.

Multiple choice capillary feeder test. Multiple choice capillary feeder (MultiCAFE) experiments were performed as in the study by Sellier et al. (2011). Female flies (1–2 d old) were fed fresh food for 1 d and then starved for 20–22 h in the presence of a disk of water-saturated filter paper. Groups of 20 flies were then introduced into a plastic box and given access to an array of capillaries (5 μl, 32 mm; Hirsmann Gerate) containing food solutions for 2 h (in the dark; 25°C, 70% humidity). The liquid level in each capillary was measured using NIH Image (Rasband and Bright, 1995) from pictures taken just before and at the end of the experiment.

To assess evaporation, an additional box containing no flies was prepared. This box was prepared and handled in a similar manner, and the average change in liquid level, corresponding to evaporation, was subtracted from consumption measurements obtained from boxes containing flies. This test was used to assess whether Gr66a->DTI and Gr64f->TeTxLC flies are defective in the detection of different concentrations of strychnine and l-canavanine mixed with sucrose.

Two-choice feeding test. Flies (3–5 d old) were starved on water-saturated cotton for 24 h and then placed in groups of 10 on a 60-well microtiter plate (Dutscher) at 25°C for 2 h in the dark. Alternating wells contained either 1% agarose with 0.15 mg/ml erythroglaucine dye (blue) and 5 mM sucrose (and 10 mM strychnine or 40 mM l-canavanine) or 0.2 mg/ml sulforhodamine B dye (red) and 1 mM sucrose. After 2 h, the flies were frozen and sorted according to abdomen color blue (B), red (R), or purple (P). A preference index (PI) for the blue solution was computed as \(\frac{N_B + 0.5NP}{N_B + NP + NR} \), where \(N \) stands for the number of flies of each category. A PI value of 1 indicates complete preference for the 5 mM sucrose (blue) solution, whereas 0 indicates complete preference for the 1 mM sucrose (red) solution. To check that the food colors are not entrancing during the 1 s of each recording, stimuli were separated by at least 1 min. Spikes were not sorted by amplitude or shape, except noted otherwise, because extracellular recordings from taste receptors in Drosophila.
Drosophila are notoriously difficult to sort (French et al., 1984; Meunier et al., 2003b).

Three separate experiments were performed. In the first (see Fig. 5F–H), we looked at the relative effectiveness of seven bitter chemicals on the responses of i9, i5, and s6 sensilla to 0.1 M sucrose mixed or not with 1 mM of a bitter chemical (nicotine, caffeine, escin, lobeline, strychnine, and denatonium) or 40 mM L-canavanine. In a second experiment (see Fig. 5I–K), we looked at the effect of strychnine concentration (0.001, 0.1, and 10 mM) to inhibit the responses to 0.1 M sucrose in these sensilla.

In a third experiment (see Fig. 6), we recorded the spiking activity from i5, i9, and s6 sensilla in response to sucrose (0.001, 0.1, and 1 mM), strychnine (0.001, 0.1, and 10 mM), and 0.1 M sucrose mixed with strychnine (0.001, 0.1, and 10 mM) in Gr66a>DTI flies and in their parental lines. Because i9 sensilla are not very sensitive to strychnine (Weiss et al., 2011), we also tested caffeine (0.001, 0.1, and 10 mM) to validate that the genetic construction is ablating the cell responding to bitter substances with the Gr66a-Gal4 driver.

Electrophysiological recordings from taste sensilla on the legs. Taste sensilla from the legs were recorded using the same procedures as when recording from labellar sensilla, except that one front leg was immobilized and properly oriented to allow tip recording. To verify that expression of DTI in Gr66a-expressing cells abolished responses to bitter tastants, the sensilla fsb and f5s (Ling et al., 2014), which differ in their expression of Gr66a (see Fig. 7B), were stimulated with 10 mM strychnine and 40 mM L-canavanine.

Electrophysiological recordings and optogenetic stimulation. To combine chemical and optogenetic activation of taste neurons, we used a modified tip-recording configuration. To control more strictly the timing of the chemical stimulation, we placed the head stage of the amplifier and the stimulus electrode on a sliding platform driven by a piezoelectric linear actuator (PPA10M and amplifier CA4μ10; Cedrat Technologies). A light stimulator (480 nm blue light; model pE-100; CoolLED) and the piezo actuator were driven by a programmable logic controller (RIO-47122; Galil).

To test whether the firing activity of bitter-sensitive cells could affect the responses to sugar, we recorded from i9 sensilla in Gr66a>ChR2 flies; these sensilla host only two taste cells that elicit extracellular action potentials that are easy to sort (Hiroi et al., 2004). Each recording lasted 6 s, during which three flashes of 8 l/s were delivered (1, 0.5, and 0.5 s separated by 0.5 s), starting 1 s after the beginning of the contact (see Fig. 8A). We displayed the time course of the responses within 100 ms bins.

To test whether strychnine inhibits the spiking generator within the sugar-sensitive cells or whether it interferes directly with sugar transduction, we recorded the responses to sugar or to optogenetic stimulation in the presence of strychnine in i9 and in i5/i7 sensilla of Gr64f>ChR2 flies. The recording configura-
partitioned interactions constructing slice F tests and evaluated pairwise differences within single effects with t tests. All these outputs were generated using the GLIMMIX procedure of SAS 9.2.

Results

PERs/PRs to stimulation of the labelum with mixtures of sugar/bitter molecules

Because α-canavanine and strychnine are considered as bitter for *Drosophila*, we expected that both substances would reduce PERs. When stimulated with sucrose, flies responded to sucrose with a strong PER (Fig. 1B). In response to 10 mM strychnine mixed with 0.1 mM sucrose, Gr66a–DTI flies and their parents showed a strongly reduced PER compared with 0.1 mM sucrose alone ($p < 0.001$, Fisher’s exact test), whereas α-canavanine had no effect. Only $10–15\%$ of control flies exhibited a PR in response to 0.1 mM sucrose (Fig. 1B). Approximately $60–70\%$ of the flies from control strains retracted their proboscis in response to sucrose plus strychnine or α-canavanine ($p < 0.001$). However, Gr66a–DTI flies responded to the mixture at a level similar to sucrose alone ($p = 1$).

Altogether, these data indicate that strychnine differs from α-canavanine when mixed with sugar, with strychnine inhibiting PER but not α-canavanine, whereas both substances induce the PR. Although PERs seem to be insensitive to the presence or absence of Gr66a cells, the PR is affected strongly by the ablation.

PERs/PRs to stimulation of the legs with mixed or dissociated solutions of sugar/bitter molecules

We then examined whether similar findings could be obtained by stimulating leg taste receptors. Stimulating these appendages provides us with an additional possibility, which is to present sugar and bitter separately (Fig. 2A). This was tested on w^{1118} flies, on which we compared PERs/PRs to sugar or strychnine or α-canavanine by stimulating either one leg with the mixture (mixed presentation) or one leg with a bitter substance and the contralateral one with sugar (dissociated presentation; Fig. 2B). In these conditions, we obtained a highly significant difference of PER between strychnine plus sucrose versus strychnine plus α-canavanine in the mixed presentation ($p < 0.000$, Fisher’s exact test, two tailed) but not in the dissociated presentation ($p = 0.07$). This suggests that the mixture of sugar and strychnine is more effective in preventing the initiation of a PER than when the stimuli (at the same concentration) are presented on different legs, even if we can expect to stimulate the same number of taste receptor neurons in both situations.

We then performed the same experiment in Gr66a–DTI flies and their parents (Fig. 2C,D). As expected, the strychnine-induced inhibition of the PER was more marked in the mixed mode than in the dissociated presentation mode in the control strains (Fig. 2C,D, $p < 0.001$) and Gr66a–DTI flies ($p = 0.006$). With α-canavanine, the situation was different as the PERs were similar in the two modes of presentation (Fig. 2C,D, $p = 1$). Although no difference was found in the PRs to sucrose plus strychnine and sucrose plus α-canavanine in both mode of presentations, we found a difference in the PR between Gr66a–DTI flies and their parents for sucrose plus α-canavanine (Gr66a–Gal80, $p = 0.007$; UAS–DTI, $p = 0.003$) in the mixed mode and only between one control strain and Gr66a–DTI for the dissociated presentation.

Because Gr66a is not expressed ubiquitously in taste neurons detecting bitter chemicals on the tarsi (Ling et al., 2014), we also tested ablating cells expressing Gr33a, which is expressed in bitter-sensitive cells (Moon et al., 2009; Lee et al., 2010). A...
difference in the PRs to sucrose plus l-canavanine between the control strains and Gr33a>DTI flies was observed (Fig. 2E,F) as in Gr66a>DTI flies. In addition, significant differences were observed in the PERs to sucrose plus strychnine in both presentation modes.

These observations suggest that taste cells expressing Gr66a and Gr33a play a role in triggering PRs (as found on the prosobris) and also that Gr33a cells contribute to prevent PERs. However, in all strains tested here, the effect of strychnine was more potent on the PER when presented within a mixture than when presented separately, whereas the mode of presentation had no effect on the PR.

PERs/PRs to sugar and optogenetic activation of bitter-sensitive cells

To test whether activating bitter cells per se is sufficient to reduce sugar-induced PERs, we expressed ChR2 into Gr66a cells to activate them with light (Fig. 3A). In Gr66a>ChR2 flies, we observed a 22% reduction of the PER by BL (Fisher’s exact test, p = 0.024; Fig. 3A), although no effect was observed in the control strains (Gr66a–Gal4 and UAS–ChR2; p = 1.000). We observed a significant increase of the PR in Gr66a>ChR2 flies stimulated with sucrose plus BL compared with sucrose alone (p = 0.011; Fig. 3A), although no effect was detected in control flies (p = 0.7445).

Thus, the optogenetic activation of Gr66a cells of the legs and the prosobris exerts only a moderate inhibition of the PER but a marked effect on the PR, mimicking the effect of the dissociated presentation mode with strychnine (Fig. 2C,D) and of l-canavanine on responses on the labellum (Fig. 1B,C).

PERs/PRs to optogenetic activation of sugar-sensitive cells and strychnine

Conversely, we expressed ChR2 into Gr64f cells to mimic the effect of sugar with light (Fig. 3B). Gr64f>ChR2 flies responded to BL stimulation with a robust PER, whereas flies from the control strains did not respond (Fig. 3B). We found an ~29% reduction in the PER when Gr64f>ChR2 flies were stimulated with BL plus 10 mM strychnine compared with BL plus water (as control for the tactile stimulation; Fisher’s exact test, p = 0.0073). No difference was observed in the PER when the control strain was stimulated with BL plus water and BL plus strychnine (p = 0.695). A significant increase in the PR was observed when Gr64f>ChR2 flies were stimulated with BL plus strychnine compared with BL plus water alone (p = 0.0036).

In summary, the BL-induced PER is inhibited by strychnine to an extent comparable with the dissociated presentation (Fig. 2B).

Behavioral responses of flies to sugar/bitter solutions in MultiCAFE and two-choice tests

Our observations on PERs/PRs indicate that strychnine mixed with sucrose plays a stronger role than strychnine alone, whereas
Figure 5. Bitter chemicals differ in their capacity to inhibit sucrose detection. A, Representative sample of strychnine-induced inhibition of the responses to sugar in taste sensilla obtained with a tip-recording electrode. Top trace shows the first 500 ms of a recording in which one neuron is firing vigorously when stimulated with 0.1 M sucrose (H11001, 100 mM TCC used as an electrolyte). The middle trace shows the activation of another neuron in response to 10 mM strychnine. The bottom trace shows the firing activity recorded in response to a mixture of these two stimuli with much less action potentials than expected if the two neurons would react to sugar and strychnine independently. B, Location of the taste sensilla mostly recorded from in this study, using a map notation introduced by Hiroi et al. (2002) and cellular composition of the sensilla tested. I5 and I6 sensilla host four taste cells (C) and s6 sensilla (D), whereas i9 sensilla host only two taste cells (E). These taste cells are labeled according to their sensitivity as S (sugar-sensitive), W (water-sensitive), L1 (low salt-sensitive), and L2 (bitter-sensitive). Bitter chemicals (but not all) (Figure legend continues.)
whether l-canavanine is mixed or alone makes no difference. Because these observations were performed on a short timescale (within seconds), these differences may not affect feeding activities on a longer timescale, which are regulated by post-ingestive mechanisms. Insects are indeed capable of rejecting noxious substances through post-ingestive mechanisms (Glendinning, 1996; Wright et al., 2010) and to quickly learn the nutritive value of food (Burke and Waddell, 2011; Dus et al., 2011; Fujita and Tanimura, 2011; Gruber et al., 2013; Bjordal et al., 2014). Thus, we evaluated whether defects in peripheral detection of bitter molecules inherent in Gr66a–DTI flies would be compensated for in behavioral tests lasting several hours.

In MultiCAFE assays, Gr66a>DTI flies and their parental lines preferred feeding from capillary feeders without strychnine in relation to the dose (p < 0.001, GLMM; Fig. 4A). However, Gr66a>DTI flies did not discriminate between sugar solutions containing different concentrations of l-canavanine (p = 0.967; Fig. 4B), whereas the parental lines had no difficulty avoiding 1 and 10 mM l-canavanine mixed with sugar (p < 0.001, GLMM; Fig. 4B).

To confirm that these differences were not attributable to the diphtheria toxin, we silenced bitter-sensitive cells using TeTxLC. In a MultiCAFE assay, Gr66a>TeTxLC flies and one parental line preferred feeding from capillaries without strychnine in relation to the dose (p < 0.001, GLMM; Fig. 4C). However, Gr66a>TeTxLC flies did not discriminate between different solutions of l-canavanine (p = 0.2088; Fig. 4D), whereas one parental line avoided sucrose solutions containing 10 mM l-canavanine (p < 0.0001, GLMM; Fig. 4D).

We further tested these flies in a two-choice feeding assay. In the presence of strychnine, both parental lines and Gr66a>TeTxLC flies completely avoided the treated wells (p < 0.001, unpaired Student’s t test; Fig. 4E). In contrast, Gr66a>TeTxLC flies were unable to detect l-canavanine (blue/red, p = 0.191; red/blue, 0.131). One parental line (Gr66a–Gal4) completely avoided l-canavanine (p < 0.0001), whereas the other (UAS–TeTxLC) was less sensitive. This is likely attributable to a genetic background effect (blue/red, p = 0.0001; red/blue, p < 0.001).

Altogether, these results indicate that bitter cells expressing Gr66a are necessary to detect l-canavanine but are dispensable for detecting strychnine in both MultiCAFE and two-choice feeding assays, which assess feeding behavior over a 2 h timeframe.

Electrophysiological responses of labellar taste sensilla to sucrose mixed with different bitter molecules

To examine the cellular basis of these behavioral observations, we looked at the electrophysiological responses of taste sensilla stimulated with sucrose, with a bitter molecule, and with their mixture. As noted in previous studies (Meunier et al., 2003a; Jeong et al., 2013), whereas sucrose activates a cell and strychnine activates another cell, when the two chemicals are mixed, the resulting response is much less than expected by simply summing the activity of the two cells to each chemical (Fig. 5A).

We examined taste sensilla of the proboscis (Fig. 5B) that are mapped and identified according to their length and position (Shanbhag et al., 2001; Hiroi et al., 2002). Short-type sensilla (s-type) and long-type sensilla (l-type) house four taste neurons, whereas intermediate-sized (i-type) sensilla house only two taste neurons. In s-type sensilla, each taste neuron responds to different groups of molecules: sugars (Hiroi et al., 2002, 2004), water (Cameron et al., 2010; Chen et al., 2010), salts (Meunier et al., 2003b) or pheromones (Thistle et al., 2012), and bitter chemicals (Hiroi et al., 2002; Dahanukar et al., 2007; Weiss et al., 2011; Fig. 5C–E, cells S, W, L1, and L2, respectively). In l-type sensilla, three of these cells are present, but none is responding to bitter chemicals (Hiroi et al., 2002; Weiss et al., 2011). In i-type sensilla, one neuron responds to sugars whereas the other responds to bitter molecules (Hiroi et al., 2004; Fig. 5E, cells S and L2, respectively).

First, we examined whether all bitter chemicals would inhibit sugar-sensitive cells by recording the responses of taste sensilla 15–16, s6, and i9 to sucrose, and then to sucrose mixed with a bitter molecule (Fig. 5F–H). An additional stimulation with sucrose was made to ensure that cells were not intoxicated. Sensilla for which the response to the third stimulation with sucrose was suppressed were discarded. This was to ensure that any observed reduction in response to sucrose when mixed with bitter molecules was attributable to a sensory inhibition rather than an enduring toxic effect. Unless otherwise noted in this series of measurements and in all other experiments, we report on the total number of spikes detected during the first second of each recording. The spikes were not sorted and thus could represent the activity of several neurons.

In l5–l6 sensilla, we observed a reduction of activity when 100 mM sucrose was mixed with 1 mM lobeline, strychnine, denatonium, or escin (Wilcoxon’s paired test, p = 0.005, 0.028, 0.043, and 0.043; n = 10, 6, 5, and 5 respectively; Fig. 5F). We did not observe a statistically significant reduction of activity with 1 mM caffeine, 1 mM nicotine, or 40 mM l-canavanine (n = 10, 6, and 5, respectively; Fig. 5F). Similar results were obtained with s6 sensilla (n = 4–10), in which only strychnine was found to inhibit sugar detection to a statistically significant level (p = 0.04, n = 5; Fig. 5G). In i9 sensilla (n = 10), l-canavanine, strychnine, and lobeline were found to inhibit sugar detection (p = 0.008, 0.005, and 0.005, respectively; Fig. 5H).

We further examined the effect of increasing concentrations of strychnine on the response to 100 mM sucrose in these sensilla (Fig. 5I–K). We observed a consistent reduction in response to sucrose when mixed with 10 mM strychnine in l6 (Kruskall–Wallis test, p = 0.001), i9 (p = 0.04), and s6 sensilla (p = 0.003). In all three sensilla, the response to sucrose at the end of the experiment was not statistically different from the response to sucrose at the beginning of the series (p = 1.000).
Figure 6. Strychnine inhibition of sucrose responses persists in labellar s6, i9, and i5 sensilla of Gr66a–>DTI flies. Extracellular responses recorded from sensilla on the labellum (mean ± SEM) in s6 (left), i5 (middle), and i9 (right) sensilla in Gr66a–>DTI (red squares) and the parental lines (triangle, UAS–DTI; circle, Gr66a–Gal4). A–C, Responses to 0.01, 0.1 and 1 mM sucrose were dose dependent in all strains in s6 sensilla (A; Gr66a–>DTI, n = 6; Gr66a–Gal4, n = 5; UAS–DTI, n = 5), i5 sensilla (B; n = 7, 6, and 5, respectively), and i9 sensilla (C; n = 11, 6, and 5, respectively). D–G, Responses to 0.001, 0.1, and 10 mM strychnine were reduced in s6 sensilla (D) of Gr66a–>DTI flies (n = 7, 6, and 5, respectively) but not in i5 sensilla (E) that are not activated in response to bitter chemicals (n = 6, 5, and 6, respectively) and in i9 sensilla (F) that are not sensitive to strychnine (n = 10, 5, and 5, respectively). F, To check that the bitter-sensitive neuron was ablated in i5 sensilla, we tested the responses to 0.001, 0.1, and 10 mM caffeine (n = 11, 5, and 5, respectively). H–J, Responses to a mixture of 0.1 mM sucrose and 0.001, 0.1, and 10 mM strychnine in s6 sensilla (H; n = 6, 6, and 5, respectively), i5 sensilla (I; n = 7, 6, and 5, respectively) and i9 sensilla (J; n = 11, 5, and 5, respectively). A dose-dependent effect of strychnine was found in all three sensilla in the three strains. These data were analyzed with a GLIMMX procedure. Abscissa, Log_{10} of the molar concentration. **p < 0.01, ***p < 0.001. suc, Sucrose; stry, strychnine; caf, caffeine.

Figure 7. Strychnine inhibition of the responses to sucrose persists in tarsal f5b and f5s sensilla of Gr66a–>DTI flies. A, Schematic drawing of the position of f5b and f5s sensilla on the fifth tarsus of female flies. According to Ling et al. (2014), only f5s express Gr66a, which means that f5b should remain functional in Gr66a–>DTI flies. B, C, Extracellular spiking activities (mean ± SEM) recorded in responses to strychnine and L-canavanine in Gr66a–>DTI (red bars), UAS–DTI (gray bars), and Gr66a–Gal4 (white bars) flies. B, In f5b sensilla, the responses of the three strains are equivalent with respect to 10 mM strychnine (Gr66a–>DTI vs UAS–DTI, p = 0.55 and Gr66a–>DTI vs Gr66a–Gal4, p = 0.50, n = 4–7; Kruskall–Wallis test) and 40 mM L-canavanine (Gr66a–>DTI vs UAS–DTI, p = 1.00 and Gr66a–>DTI vs Gr66a–Gal4, p = 0.76, n = 4–8). C, In f5s sensilla, we found a significant difference in the responses to 10 mM strychnine between Gr66a–>DTI and the parental lines (Gr66a–>DTI vs Gr66a–Gal4, p = 0.011, n = 4–6) and 40 mM L-canavanine (Gr66a–>DTI vs Gr66a–Gal4 + UAS–DTI, p = 0.015, n = 3–7). D, E, We further tested the responses to 0.1 mM sucrose mixed with strychnine (0, 0.001, 0.1, and 10 mM) in Gr66a–>DTI (red squares), UAS–DTI (white triangle), and Gr66a–Gal4 (white circle) flies. In f5b sensilla (D) and f5s sensilla (E) in the three genotypes (n = 4–10) in which we found a significant effect of concentration in f5b sensilla (p < 0.001, GLMM procedure) and f5s sensilla (p = 0.0011, GLMM). *p < 0.05, ***p < 0.001. cana, L-Canavanine; stry, strychnine; suc, sucrose.

Electrophysiological responses of labellar taste sensilla of Gr66a–>DTI flies

Our behavioral observations together with our initial electrophysiological recordings suggest that strychnine inhibits sugar-detection cells and activates bitter-sensitive cells, whereas L-canavanine mostly activates bitter-sensitive cells. To determine whether bitter-sensitive neurons are required for sugar-sensitive neuron inhibition, we recorded the responses of flies in which cells expressing Gr66a are ablated, using the same genetic construction used in...
the behavioral experiments (*Gr66a* → *DTI*), in sensilla with four taste neurons (l5, s6), and with two neurons (i9; Fig. 5C–E).

With sucrose (Fig. 6A–C), we observed a dose-dependent response in *Gr66a* → *DTI* flies and their parental lines in all sensilla tested (*p* < 0.0001, GLMM). With strychnine (Fig. 6D, E, G), a dose-dependent response was found in the parental lines in s6 sensilla (*p* < 0.001, GLMM) but not in l5 or i9 sensilla, in which strychnine had been documented to elicit very low responses (Weiss et al., 2011). In *Gr66a* → *DTI* flies, the responses to strychnine was suppressed in s6 sensilla (*p* = 0.12, GLMM). To check whether i9 sensilla were responsive to bitter chemicals, we tested them with caffeine (Fig. 6F).

In response to mixtures of 0.1 M sucrose and strychnine (Fig. 6H–J), we found a reduction of the spiking activity in all sensilla, in the control strains and *Gr66a* → *DTI* flies (*p* < 0.001, GLMM).
These observations confirm that sugar-induced inhibition is present in sensilla that are missing cells activated by strychnine either naturally as in i-type sensilla or when bitter-sensitive cells (expressing Gr66a) are ablated.

Electrophysiological responses of leg taste sensilla of Gr66a/DTI flies
We also recorded from taste sensilla on the legs, first, to confirm that strychnine inhibits sugar detection and, second, to further establish that some bitter-sensitive neurons are not ablated on the legs in Gr66a/DTI flies. We selected sensilla f5b and f5s (Fig. 7A) because Gr66a is expressed only in f5s, whereas Gr33a is expressed in both (Ling et al., 2014). Therefore, we expected to find in Gr66a/DTI flies a suppression of the responses to strychnine and 1-canavanine in f5s but not in f5b.

First, we checked that these sensilla responded to 1-canavanine and strychnine and reacted differently to the ablation of Gr66a cells (Fig. 7B, C). The response to strychnine and to 1-canavanine was significantly different in f5s sensilla in Gr66a/DTI flies compared with the parental lines (Gr66a/DTI vs Gr66a-Gal4 + UAS–DTI; strychnine, \(p = 0.011 \); 1-canavanine, \(p = 0.015 \), Kruskall–Wallis test; Fig. 7C) but not in f5b sensilla (strychnine, \(p = 0.558 \) for Gr66a-Gal4 and \(p = 1.000 \) for UAS–DTI; no responses were recorded with 1-canavanine; Fig. 7B).

Then, we looked at the response to mixtures of strychnine with sucrose (Fig. 7D, E). Strychnine concentration had a highly significant effect in all strains because it inhibited sugar detection in both the parental lines and Gr66a/DTI flies compared with sucrose (\(p < 0.0001 \), GLMM).

These data confirm that strychnine inhibits sugar detection in sensilla other than on the labellum and that the construction Gr66a/DTI does not completely abolish the detection of strychnine in all sensilla of the tarsus because f5b sensilla keep their sensitivity toward strychnine (Fig. 7B).

Electrophysiological responses of taste sensilla stimulated with sucrose during optogenetic activation of taste cells expressing Gr66a
Although our previous observations indicate that bitter-sensitive cells are not necessary for inhibiting the detection of sugars, it does not rule out the possibility that activating a bitter-sensing cell could reduce firing in adjacent sugar-sensitive neurons. Such a mechanism has been demonstrated recently in the olfactory system of Drosophila, in which the transient activation of an olfactory receptor neuron (ORN) can inhibit the sustained activity of a neighboring ORN (Su et al., 2012).

We asked whether optogenetic activation of bitter-sensing cells could inhibit the response to sucrose in i9/i8 sensilla of Gr66a-ChR2 flies. In the absence of optogenetic activation, sucrose induced a tonic response in sugar-sensitive cells (Fig. 8B) but not in bitter-sensitive cells (Fig. 8D). In the presence of light, bitter-sensitive cells displayed a phasic–tonic excitation (Fig. 8A, D, E) that did not affect the time course of the responses to sugar in the sugar-sensitive cells (Fig. 8B–D).

Electrophysiological responses of sugar-sensitive taste neurons activated optogenetically in the presence of strychnine
We then asked whether strychnine inhibits sugar-induced responses by interfering with general cellular excitation or whether this inhibition is specific to sugar transduction. To address this question, we used Gr64f-Chr2 flies. If strychnine induces a general inhibition of the sugar-sensing neurons, we would expect it to reduce the response of Gr64f-Chr2 neurons to BL.

We stimulated i9 and I5–I7 sensilla with BL and strychnine (Fig. 9A). No significant effect of strychnine concentration on BL response was observed (one-way ANOVA, \(p = 0.79 \) for I5–I7 and \(p = 0.813 \) for i9). We found a significant difference between the response of I5–I7 and i9 when stimulated with TCC in the presence and absence of BL (Fisher’s LSD test, \(p < 0.001 \) for i9 and \(p < 0.001 \) for I5–I7). However, in these flies, strychnine inhibited responses to sucrose (Kruskall–Wallis ANOVA by ranks, \(p < 0.001 \); Fig. 9B). We infer from this that strychnine does not inhibit sugar-sensing cells but that it directly interferes with sugarspecific reception or transduction pathways.
Figure 10. Sugar-sensing inhibition simplifies the processing of conflicting messages. Sweet molecules alone are activating S cells (orange dot) that express sugar receptors such as Gr64f. Bitter molecules alone are activating L2 cells (blue dots) that express Gr66a on the labellum. These neurons project in separate areas in the subesophageal ganglion (SOG). In the presence of a mixture of sugar and bitter molecules, if these two detection channels were independent, one would expect the two populations of cells to be activated simultaneously. Our data show that bitter molecules inhibit the detection of sugar molecules. This suggests that, in flies, the detection of bitter molecules within mixtures is encoded in two ways: (1) activating bitter-sensitive cells; and (2) inhibiting sugar sensing through the sugar-sensitive cells, thereby making appetitive stimuli less attractive when mixed with bitter substances.

Discussion

In this work, we evaluated the respective roles of two pathways contributing to the detection of bitter compounds, the activation of bitter-sensitive cells, and the inhibition of sugar detection. The importance of inhibiting sugar detection is exemplified by the observation that flies deprived of bitter-sensitive cells retain the capacity to avoid feeding from sugar solutions containing strychnine almost as well as normal flies. Although the activation of bitter-sensitive cells induce active aversive reactions, such as the PR, sugar-sensing inhibition is very effective in preventing feeding from appetitive solutions when spiked with bitter chemicals. We established that chemicals such as strychnine, lobeline, denatonium, and esicin inhibit sugar detection, whereas other chemicals such as L-canavanine, caffeine, and nicotine were not effective at the concentration tested. Given the importance of sugar-sensing inhibition, these observations are consistent with former behavioral observations showing that strychnine and lobeline were more potent anti-feedants than caffeine and nicotine in MultiCAFE behavioral observations showing that strychnine and lobeline were effective at the concentration tested. Given the importance of sugar-sensing inhibition simplifies the processing of conflicting messages. Sweet molecules alone are activating S cells (orange dot) that express sugar receptors such as Gr64f. Bitter molecules alone are activating L2 cells (blue dots) that express Gr66a on the labellum. These neurons project in separate areas in the subesophageal ganglion (SOG). In the presence of a mixture of sugar and bitter molecules, if these two detection channels were independent, one would expect the two populations of cells to be activated simultaneously. Our data show that bitter molecules inhibit the detection of sugar molecules. This suggests that, in flies, the detection of bitter molecules within mixtures is encoded in two ways: (1) activating bitter-sensitive cells; and (2) inhibiting sugar sensing through the sugar-sensitive cells, thereby making appetitive stimuli less attractive when mixed with bitter substances.

Second, sugar-sensitive cells are inhibited by molecules different from those that stimulate bitter-sensitive cells. Strychnine and lobeline (as well as quinine; Sellier et al., 2011) are very potent inhibitors, whereas L-canavanine, caffeine, and nicotine are less effective. This confirms that bitter activation and sugar inhibition are two separate mechanisms, in agreement with the observation that bitter-sensitive gustatory receptors are not expressed in sugar-sensitive cells (Thorne et al., 2004; Marella et al., 2006; Hiroi et al., 2008; Weiss et al., 2011).

Third, when sugar-sensitive cells are activated by BL (using ChR2 ectopically expressed in Gr64a cells), strychnine does not inhibit the response to BL. This indicates that strychnine does not depress the excitability of sugar-sensing cells and suggests that it interferes specifically with sugar reception or transduction pathways. Thus, our data suggest that sugar-sensing cells are equipped with transduction pathways sensitive to bitter chemicals.

Recently, it has been demonstrated that an OBP, OBP49a, is required for sugar inhibition by bitter chemicals (Jeong et al., 2013). OBP49a is expressed by an accessory cell of most gustatory sensilla and is secreted in the sensillum lymph. Its loss results in reduced sugar inhibition or avoidance behavior in the presence of bitter chemicals. OBP49a directly binds quinine and denatonium, both of which are sweet taste inhibitors. Biochemical and genetic evidences show that OBP49a becomes closely associated with the sugar receptor Gr64a, indicating that OBPs may bind bitter and bring them to the immediate proximity of sugar gustatory receptors (Jeong et al., 2013). The presence of OBPs may serve as a mechanism to amplify the sensitivity of sugar neurons by chaperoning the interaction. The authors suggest an alternative mechanism analogous to the OBP LUSH, which activates a pheromone receptor (OR67d) when loaded with the ligand cis-vaccenyl acetate (cVA; Laughlin et al., 2008). However, a recent report suggests that cVA induces olfactory receptor activity in the absence of LUSH (Gomez-Diaz et al., 2013). Our study and findings on gusta-
tory receptors by Jeong et al. (2013) raise the intriguing possibility that bitter chemicals directly interact with sugar gustatory receptors.

Although sugar-sensing inhibition is an intriguing property of sugar-detecting cells, it also plays a decisive role in allowing flies to avoid mixtures spiked with bitter chemicals. This was very clear when comparing the feeding responses of flies given access to sugar mixed with either strychnine or t-camvaniane. Although t-camvaniane detection is completely suppressed after Gr66a- cell ablation, strychnine is still detected in these flies. These observations suggest that sugar-sensing inhibition plays a major role in most feeding behavior paradigms used to test feeding activities in flies, including the PER.

PER experiments on flies in which Gr66a cells were ablated or that were expressing ChR2 has allowed us to better understand the interplay of bitter detection and mixture suppression. Control strains, UAS-DTI, and Gr66a-Gal4 flies extend their proboscis less frequently in response to strychnine mixed with sucrose than when strychnine and sucrose were presented on separate legs. Gr66a->DTI flies avoid extending their proboscis in the presence of strychnine and are impaired in retracting their proboscis. t-Camvaniane does not inhibit the PER but triggers a subsequent PR that disappears in Gr66a-ablated flies.

In Gr66a->ChR2 flies, the PER is reduced by ~22% when flies are dually stimulated with sucrose and BL compared with sucrose alone. This level of inhibition is comparable with the responses of flies presented with sucrose and strychnine in the dissociated PER paradigm. The activation of bitter-sensing cells through remote activation or by stimulating with strychnine in Gr66a->ChR2 or Gr64f->ChR2 flies, respectively, triggers the PR (Fig. 4). Our observations are consistent with the hypothesis that the PER is strongly modulated by sugar-sensing inhibition, whereas the PR is triggered through the activation of bitter-sensing cells.

We postulate that sugar inhibition may contribute to adaptation of insects to their environment and should be subjected to selection pressure. One possibility is that sugar-sensing inhibition could be associated with bitter molecules that are particularly toxic for the animals because this mechanism seems to be hardwired, whereas the aversion to bitter chemicals that are detected only by bitter-sensitive cells could be modulated at the level of the synapses by a variety of mechanisms. A partial support to this hypothesis comes from the observation that camphor aversion can be modulated whereas quinine aversion is not in relation to the relative toxicity of these compounds (Zhang et al., 2013).

We speculate that different adaptation strategies may exist across insect species, i.e., the same molecule could activate bitter cells and/or inhibit sugar cells differently. Alkaloids such as strychnine inhibits the detection of sugars in Lepidoptera larvae (Schoonhoven and van Loom, 2002) and sugar alcohols (but not sucrose) in Lymantria dispar (Martin and Shields, 2012). Contrary to Drosophila, the grasshopper Schistocerca americana does not detect t-camvaniane by excitation but only by sugar-sensing inhibition (Chapman et al., 1991). In honeybees, sugar-sensing inhibition might be even more developed than bitter detection (de Brito Sanchez, 2011) because honeybees possess very few gustatory receptors.

In summary, our results suggest strongly that detection of noxious compounds involves at least two independent mechanisms: (1) the activation of bitter-sensitive cells; and (2) mixture suppression within sugar-sensitive cells. This inactivation mechanism may contribute to simplify the processing of messages sent to the brain by the taste receptors when confronted with conflicting messages (Fig. 10). Our observations do not challenge the view that taste coding involves labeled lines, but they should certainly encourage us to revise our view of the sensory space encoded by each taste quality.

References
Hong W, Zhao HB (2014) Vampire bats exhibit evolutionary reduction of bitter taste receptor genes common to other bats. Proc R Soc 281:2041079. CrossRef Medline

