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Abstract 8 

Several key compounds for the final beer flavour (higher alcohols, esters, vicinal diketones) are produced during 9 

the alcoholic fermentation phase. The paper demonstrates the possibility of obtaining various desired final aroma 10 

profiles and reducing the total process time using dynamic optimisation of three control variables: temperature, 11 

top pressure and initial yeast concentration in the fermentation tank. The optimisation is based on a sequential 12 

quadratic programming algorithm, on a dynamic model of the alcoholic fermentation and on an aroma 13 

production model. The robustness of the optimal control profile with respect to model uncertainty is discussed. 14 
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Introduction 18 

The alcoholic fermentation is an important stage in the beer production process. During this phase, fermentable 19 

sugars present in the brewing wort are transformed to ethanol and several aroma compounds important for the 20 

final beer flavour are produced. The contribution of the alcoholic fermentation phase to the final beer flavour 21 

depends on the wort composition, on the yeast strain and on the operating conditions. Industrial operating 22 

conditions for most existing beer brands were determined empirically and are confidential. The aim of this work 23 

is to demonstrate the possibility of optimising the fermentation temperature profile, the top pressure profile and 24 

the initial yeast concentration based on organoleptic and economic criteria. The organoleptic criterion takes into 25 

account target concentrations of the following compounds believed to be important for the final beer flavour [1]: 26 

two higher alcohols (isoamyl alcohol and phenyl ethanol), three esters (ethyl acetate, ethyl hexanoate and 27 

isoamyl acetate) and one vicinal diketone (diacetyl). The economic criterion is based on process time 28 

minimisation. 29 

Previous work on the optimisation of the brewing process was concerned with the computation of the 30 

temperature profile alone. Gee and Ramirez [2] used Pontryaghin’s minimum principle for the temperature 31 

profile optimisation which insured a minimum fermentation time and a maximum ethanol production. Not 32 

surprisingly, they found that the fermentation temperature take its maximum possible value at any time. This 33 

purely economic optimum could be anticipated from the existing knowledge of the alcoholic fermentation 34 

process but is not used in practice because of its undesired effect on the aroma composition. Andres-Toro 35 

et al. [3] used an optimisation technique based on genetic algorithms and introduced the idea of aroma targets 36 

(for ethyl acetate and diacetyl) in addition to fermentation time minimisation. They obtained a non-trivial 37 

temperature profile where high temperatures were still favoured, however. 38 
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The present contribution is an extension and a generalisation of the results of Titica et al. [4]. Dynamic 39 

optimisation is used to compute flexible control profiles instead of two-stage controls considered previously. 40 

Limitations of the process model that made it unsuitable for simulation in time-varying operating conditions 41 

were removed. The possibility of reducing the fermentation time substantially without altering the final aroma 42 

profile was demonstrated for a beer previously obtained in constant operating conditions. The feasibility (using a 43 

single yeast strain and wort composition) of four commercial beer aroma profiles is discussed and the limitations 44 

of the aroma control using the three considered operating conditions alone are pointed out. Finally, the 45 

robustness of the final aroma concentrations and of the optimal operating conditions with respect to unavoidable 46 

modelling errors is analysed. 47 

Materials and methods 48 

Experimental 49 

The alcoholic fermentation and the aroma production models were built and validated on data coming from nine 50 

laboratory scale experiments. Experiments were carried out in a 15 L, 0.5 m high, stainless steel bioreactor (LSL 51 

Biolafitte, France) filled with 12 L of wort, under gentle agitation (100 rpm). Preliminary experiments showed 52 

that mechanical agitation was needed to compensate the absence of the natural agitation that occurs in large scale 53 

brewing (10 m high tanks or higher) due to CO2 release. The lager wort and the industrial yeast strain, 54 

Saccharomyces cerevisiae var. uvarum, were provided by the Institut Français de Brasserie et Malterie (IFBM, 55 

France). The conditions of the experimental runs R1 to R4 and R6 to R9 were selected according to a 23 56 

experimental design. The three factors were the fermentation temperature (10 and 16°C), the top pressure (50 57 

and 800 mbar) and the initial yeast concentration (5 and 20 million cells/mL). The run R5 was performed in 58 

intermediate operating conditions (13°C, 450 mbar and 10 million cells/mL). 59 

The concentrations of ethanol, isoamyl alcohol, phenyl ethanol, ethyl acetate, ethyl hexanoate and isoamyl 60 

acetate were determined by gas chromatography [5] coupled with mass spectrometry in the case of diacetyl [6]. 61 

The evolved carbon dioxide was recorded with a gas meter (Schlumberger, France), with a resolution better than 62 

0.5% of the total amount of gas produced in each experiment. The measurements describing the alcoholic 63 

fermentation (ethanol, wort density, CO2 production, refractive index and fermentable sugar concentration) were 64 

reconciled using well-established stoichiometric relationships [7]. The yeast cell concentration was determined 65 

with a particle counter (Coulter Z1, Coultronics, France). Three counts were performed at 3 and 3.5 µm and the 66 

logarithmic average of the six counts was taken. 67 

Alcoholic fermentation model 68 

The optimisation of the operating conditions with respect to the specified criterion is an iterative process. In each 69 

iteration candidate solutions are tested using a process model. The process model used in this work consisted in 70 

an alcoholic fermentation model coupled with an aroma production model. 71 

The alcoholic fermentation model is a modified version of a previously reported one [8]. The main modification 72 

concerns the description of the CO2 transfer between the wort and the headspace. In [8] it was assumed that CO2 73 

was dissolved in the wort until saturation and released afterwards. This assumption was reasonable for constant 74 

operating conditions, but seems questionable in the dynamic optimisation context when variable temperature and 75 
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top pressure profiles are usually obtained. The stated assumption was replaced by a rigorous mass balance of the 76 

CO2 in the wort and in the headspace and a mass balance of the air in the headspace. Solubility of the air (N2 and 77 

O2) in the wort was found negligible as far as the mass balance was concerned. 78 

The alcoholic fermentation can be described equivalently by the fermentable sugar consumption, ethanol 79 

production, wort density decrease or CO2 production [7]. The CO2 was selected because it is the most convenient 80 

variable to be measured on-line [9][10]. The model was constructed by analogy with classical microbial growth 81 

kinetics with substrate limitation and product inhibition: 82 
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The rate of the alcoholic fermentation was described by the rate of CO2 production dtdC p / . Simultaneously, 87 

ethanol (E) is produced and fermentable sugars (S) are consumed, with constant yields (YE/C and YS/C 88 

respectively). The initial fermentation rate, when 0=pC , is proportional to the initial yeast concentration X0. 89 

The “specific” fermentation rate ν was expressed as [11]: 90 

( ) ( ))()(exp, ,typddCtypd CCKKKC −−−= ννθν θθθν       (5) 91 

For small temperature variations (±3K) compared to the typical absolute fermentation temperature (286K), the 92 

given relationship is a close approximation of the Arrhenius law. A similar dependence was assumed for the 93 

dissolved CO2 (Cd). The “typical” temperature and dissolved CO2 values are those of the central point of the 94 

experimental design (run R5) and correspond to usual values for lager beer making. For modelling purposes, it 95 

was assumed that the produced CO2 (Cp) is transferred into the solution, because of the large contact area 96 

between the yeast cells and the wort. The mass transfer between the solution (Cd) and the headspace (Ch), 97 

depends on the partial CO2 pressure in the headspace (pc) and on the tank geometry and agitation through a 98 

kinetic constant (τ): 99 
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Csat is the equilibrium CO2 concentration in the wort at a given temperature (θ) and at a given partial headspace 102 

pressure (pc). It was determined from tables provided by Institut Français de Brasserie et Malterie and 103 

approximated by the following empirical formula: 104 
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The evolution of the CO2 concentration in the headspace (Ch) is given by : 106 
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0)0( =hC            (10) 108 

where γ is the ratio of the wort volume to the headspace volume, Ca is the air concentration and Φg the total gas 109 

outflow rate (CO2 + air). The CO2 outflow rate is proportional to the CO2 mass fraction in the headspace. The air 110 

concentration in the headspace diminishes with a rate proportional to the air mass fraction: 111 
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The partial CO2 (pc) and air (pa) pressures were calculated using the perfect gas law. The technologically 114 

important variable is the total pressure (p): 115 
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where R is the perfect gas constant, Mc is the CO2 molar mass and Ma is the equivalent molar mass of the air. 119 

The parameter values of the alcoholic fermentation model are reported in Table 1. The differences with 120 

previously reported values [8][12] are due to the way in which the dissolved carbon dioxide was estimated. 121 

Aroma production model 122 

A mathematical model for some aroma compounds produced during the alcoholic fermentation, and considered 123 

important for the final beer flavour, was reported previously [11][12]. The same model was used for optimal 124 

control, with the following modifications: (i) In the new version, the operating conditions affect the yields versus 125 

CO2 in a multiplicative, rather than additive way. (ii) The two-phase yield for the ester production was replaced 126 

by a single-phase, monotonically increasing yield. (iii) The model parameters were identified based on the whole 127 

pool of experiments, rather than separately for each experiment. This allowed a statistical analysis of the 128 

reliability of the parameter estimates. (iv) Parameters not significantly different from zero were removed from 129 

the model, i.e. set to exactly zero. 130 

Higher alcohols. Two higher alcohols were considered in this work, based on their organoleptic thresholds in 131 

beer [1]: the isoamyl alcohol (IAL) and the phenyl ethanol (PHL). Their production rate was related to the 132 

alcoholic fermentation rate, with yields (Yi/C) depending on the operating conditions: temperature (θ), dissolved 133 

CO2 (Cd) and initial yeast concentration in the wort (X0): 134 
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Esters. The three selected esters were the ethyl acetate (ETA), the ethyl hexanoate (ETX) and the isoamyl acetate 138 

(IAA). Their production rate was related to the alcoholic fermentation rate, as in the case of higher alcohols, but 139 

the yield increased with fermentation progress: 140 
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The effect of the operating conditions on the yields (Yi/C(θ,p,X0)) had the same mathematical expression as in the 143 

case of the higher alcohols (Equation 18). 144 

Vicinal diketones. The two important diketones in beer are the diacetyl and the pentanedione. In the considered 145 

experiments, the pentanedione concentration was always lower than the organoleptic threshold [12] and hence 146 

only the diacetyl model was considered for the optimal control. A detailed analysis of this model was given 147 

previously [12]. The diacetyl was simultaneously produced and reduced during the alcoholic fermentation: 148 

)](exp[
)(

)()( 2,1,/ typDIADIA
p

CDIA
DIA WW

dt
tdC

tYt
dt

dA θθ −−=      (21) 149 

0)0( =DIAA            (22) 150 

The production yield (YDIA/C) asymptotically decreased to zero. An empirical relationship describing this 151 

behaviour was established: 152 
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Statistical significance of the model coefficients. The significance test was based on the so-called Mallows 155 

statistic, which establishes a trade-off between the fit to experimental data and the model complexity, i.e. number 156 

of adjustable parameters [14]. This criterion says that a parameter should be retained in the model only if it 157 

reduces the residual variance sufficiently compared to the estimated measurement variance. For each aroma 158 

compound (i), the Mallows statistic (Ii) was minimised over the various combinations of ni nonzero parameters: 159 
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Here ai(tk) are the measured concentrations and Ai(tk) are the concentrations predicted by the model with ni 161 

nonzero parameters. The measurement variance 2
iσ  was estimated as the residual variance of the complete 162 

model, with all nonzero parameters. 163 

The numeric values of the coefficients appearing in the aroma production model, together with their confidence 164 

limits, are reported in the Table 2. 165 

Optimal control problem 166 

The optimal control of the fermentation process consisted in the selection of the operating conditions that 167 

minimised an overall criterion Q, which reflected the desired product quality and plant operation mode. 168 

Additional requirements were introduced via a set of constraints that admissible solutions must satisfy. The 169 

operating conditions considered in this work are the wort temperature θ, controlled by the cooling rate Φθ, the 170 
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top pressure p, controlled by the gas outflow rate Φg, the initial yeast concentration in the wort X0, and the total 171 

fermentation time tf. The optimal control problem is stated as: 172 

{ } QXttt
ff ttgttf minarg,)(,)(, ],[],[ =∈∈ 000 ΦΦθ       (26) 173 

The “arg min” symbol means the “the values which minimise”. The optimisation criterion and the constraints are 174 

detailed below. 175 

Optimisation criterion 176 

The considered problem is a multiobjective optimisation: approaching the five aroma targets as close as possible, 177 

reducing the final diacetyl concentration and the total processing time, as well as smoothing out the temperature 178 

and the top pressure profiles. The overall optimisation criterion is a weighted sum of the nine partial criteria. The 179 

weights specify the desired trade-offs between possibly conflicting objectives. In order to simplify the selection 180 

of the weights, all partial criteria were scaled by physically meaningful quantities. Thus, the partial criteria and 181 

the associated weights are dimensionless quantities of order of unity. 182 

Approaching the aroma targets. The final concentrations of the five aroma compounds, believed to be 183 

important for the final beer flavour, have to be as close as possible to their respective targets: 184 
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Here Qi is the partial criterion associated to the aroma compound i, Wi is the associated weight, Ai(tf) is the aroma 186 

concentration at the end of the fermentation, Ai,trg is the target concentration, and Ai,tol is the accepted tolerance. 187 

Since there is no point in trying to approach the target closer than either the model accuracy or the perceived 188 

difference, the tolerance was selected as: 189 
2
,

22
, orgiitoli AA +=σ           (28) 190 

where σi is the model prediction accuracy (Table 2) and Ai,org is the organoleptically significant difference in the 191 

concentration of the compound i taken as 10% of the organoleptic threshold of the considered compound in beer 192 

[1]. An alternative way of expressing the tolerance would be using the largest of the two values σi and Ai,org. The 193 

tolerance provides a natural scaling of the associated optimisation criterion. 194 

Minimising the diacetyl concentration. Diacetyl is an undesired compound in the finished beer. No target was 195 

defined for this compound because the lowest possible value is desired in practice (ideally zero). Minimisation of 196 

the diacetyl concentration at the end of the main fermentation is an economically important goal, since it may 197 

result in the reduction of the cost of the subsequent processing (dedicated “diacetyl rest” and/or lagering phases). 198 

Mathematically, this goal was expressed as: 199 

typDIA

fDIA
DIADIA A

tA
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,
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where ADIA(tf) is the diacetyl concentration at the end of the alcoholic fermentation and ADIA,typ is a typical value 201 

of the final diacetyl concentration, used as a scaling constant.  202 

Minimising the fermentation time. The reduction of the processing time is desirable from an economic point of 203 

view. No target value was given for the fermentation time. The optimisation algorithm was free to select the 204 

shortest possible fermentation time compatible with the other requirements: 205 
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where tf is the final fermentation time and ttyp is a typical value for the final time, used for scaling. 207 

Smoothing out the temperature and top pressure profiles. Technologically, a smooth plant operation is 208 

usually desired. Smooth temperature profile requires a smaller peak cooling power. A smooth top pressure 209 

profile avoids discontinuities in the CO2 outflow, facilitating its recovery. Numerically, penalising zigzagging 210 

profiles favours robust convergence to a global optimum. The smoothing objective was expressed as a penalty of 211 

the curvature (second time derivative) of the temperature and top pressure profiles. For numerical computations, 212 

the profiles were sampled at equally spaced time points. The scaling factors were chosen to make the curvature 213 

criteria invariant with respect to the total fermentation time and to the range of the variables: 214 
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Here nt is the total number of sampling points, θk and pk are wort temperature and total headspace pressure at the 217 

sampling point number k. 218 

Overall optimisation criterion. The overall optimisation criterion is the sum of the nine partial criteria. It 219 

reflects the best possible trade-off between generally conflicting optimisation goals: 220 
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Technological constraints 222 

The operating conditions (temperature, top pressure and initial yeast concentration) were limited to the model 223 

validity range, which is the range of the operating conditions of the experimental design that provided data for 224 

model identification and validation. Additionally, the initial top pressure must equal the atmospheric pressure 225 

patm, since it can be increased only by the CO2 produced by fermentation: 226 

[ ]maxmin ,)( θθθ ∈t ,  [ ]ftt ,0∈        (34) 227 

[ ]max,)( pptp atm∈ ,  [ ]ftt ,0∈        (35) 228 

atmpp =)(0            (36) 229 

[ ]maxmin , 000 XXX ∈           (37) 230 

On most fermentation tanks, the temperature is controlled using a cooling jacket. The associated control variable, 231 

namely the cooling rate Φθ, can only be positive since no heating device usually exists. Its amplitude is limited 232 

by the maximum available cooling power or the maximum possible heat transfer rate: 233 

[ ]max,)( θθ ΦΦ 0∈t ,  [ ]ftt ,0∈        (38) 234 

The top pressure is generally controlled by a valve. The corresponding control variable is the outflow gas rate Φg 235 

which is also positive and limited by the valve diameter: 236 

[ ]max,0)( gg t ΦΦ ∈ ,  [ ]ftt ,0∈        (39) 237 
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The alcoholic fermentation is considered finished when the residual fermentable sugar concentration reaches a 238 

specified value, corresponding to the so-called wort “attenuation” limit: 239 

resf StS =)(            (40) 240 

This constraint defines the fermentation end time tf. The residual concentration Sres is generally known for a 241 

given wort and yeast strain. 242 

Numerical values of the optimal control problem parameters are reported in Table 3. The target aroma 243 

concentrations considered in this work are given in Table 4. The aroma profiles of the five sorts of beer listed in 244 

Table 4 are discussed in the “Results and discussion” section below. 245 

Dynamic optimisation algorithm 246 

The considered optimal control problem is a dynamic one, since the unknown control variables are functions of 247 

time. The optimisation criterion contains linear and quadratic terms in the state variables. The constraints are 248 

linear in the state and control variables, except the top pressure constraint, which involves products of state 249 

variables (Cd(t)θ(t) and Ca(t)θ(t)). However, the main nonlinearity comes from the dynamic model of the 250 

fermentation process. 251 

Taking into account these characteristics of the control problem, a variant of the sequential quadratic 252 

programming (SQP) algorithm was used for solving it [15], coupled with a collocation (time discretisation) 253 

technique [16] and a safeguarded line search based on a “confidence region” method [17]. The main steps of the 254 

algorithm were: 255 

Step 0. Initialisation. A non-optimal but admissible (with respect to the constraints) solution was determined 256 

before entering the main algorithm. The initial fermentable sugar concentration is determined from the desired 257 

ethanol concentration in the finished beer (Etrg): 258 

trg
CE

CS
res E

Y
YSS

/

/)0( +=          (41) 259 

Random but admissible set-point profiles were generated for temperature and top pressure. A random admissible 260 

value was generated for the initial yeast concentration. The model equations were solved using simple 261 

proportional controllers to follow the set-points: 262 

( ))()()( ttKt setp θθθθ −=Φ          (42) 263 

( ))()()( tptpKt setppg −=Φ          (43) 264 

The fermentation end time (tf) was determined as the moment when the fermentable sugar concentration fell 265 

below the specified limit (Sres).The resulting control variables (cooling rate and gas outflow rate) and the 266 

resulting fermentation end time were used as starting points for the optimisation. 267 

Step 1. Discretisation of the dynamic problem. Let x be the vector of the nx = 12 state variables and u the 268 

vector of the nu = 2 control variables: 269 

[ ]TahdCDIADIAPHLIAlIAAETXETAp CCCYAAAAAACx θ/=   (44) 270 

[ ]Tgu ΦΦθ=           (45) 271 
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The state and control variables were sampled at a finite number (nt = 49) of time points [16]. This reduced an 272 

infinite-dimensional problem to a finite-dimensional one, which could be handled by a numerical computer. The 273 

optimisation criterion, the constraints and the dynamic model equations were discretised on the same time grid. 274 

Step 2. Construction of a local optimisation sub-problem. The SQP method requires local approximation of 275 

the non-linear optimisation problem by a quadratic one with linear constraints, using limited Taylor series 276 

expansion. In the standard SQP method the quadratic approximation is made to the Lagrangean function. Its 277 

Hessian matrix includes curvature information on both the objective function and the constraints [15]. In this 278 

application the Hessian matrix of the objective function alone was used. The objective function being truly 279 

quadratic, its second order Taylor series expansion was exact. The discretised dynamic model equations were 280 

treated as additional constraints [15]. The limited Taylor series expansion being valid only locally, a limited 281 

search region around the current solution was established, using a set of “box” (min-max) constraints [17]. 282 

Step 3. Solution of the local optimisation sub-problem. Commercial software, based on an “active constraint 283 

set” method was used to solve the quadratic optimisation problems with linear constraints [18]. This software did 284 

not exploit the special structure of the collocation equations and was unable to solve a problem of moderate size 285 

( 688)(2 =++ xut nnn ). The number of variables was reduced to 1122 =++ xut nnn  by solving the 286 

linearized collocation equations explicitly. The reduction step involved a structurally well conditioned and sparse 287 

matrix, making the computation both fast and accurate. 288 

Step 4. Convergence test. The non-linear state equations were solved using the determined control variables. 289 

The value of the optimisation criterion was computed and the satisfaction of the constraints was checked. If the 290 

control variables, the state variables and the optimisation criterion were modified by less than a pre-specified 291 

amount, and if all constraints were satisfied, then calculations were halted. Else a new iteration was made, 292 

starting with step 1. 293 

The algorithm was always run several (~10) times with various random initialisation in step 0. Robust 294 

convergence to the same optimum was observed. Occasionally, local optima in form of zigzagging control 295 

profiles were encountered. The control smoothing terms (Equations 31 and 32) were found very useful in 296 

avoiding these local optima. A detailed mathematical description of the algorithm is available from the authors 297 

on request. 298 

Results and discussion 299 

Alcoholic fermentation model validation 300 

The main measured and simulated variables in the alcoholic fermentation model are presented in Figure 1 for the 301 

run R5, not used for the identification of the model coefficients. The carbon dioxide evolution rate is predicted 302 

reasonably well. The evolution rate is zero for the first 24 hours: during this time period the produced CO2 is 303 

partly dissolved in the wort and partly accumulated in the headspace increasing the top pressure. The top 304 

pressure increases until the set-point is reached and then remains constant being controlled by the outflow valve. 305 

The partial air pressure remains constant until the outflow valve is opened and then decreases, the air being 306 

evacuated from the tank along with the CO2. The partial CO2 pressure equals the total one when the air was 307 

evacuated completely. The ethanol production, proportional to the cumulated CO2 production, is predicted 308 

almost perfectly in this run. It appears from the model simulation that the dissolved CO2 exceeds its saturation 309 
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limit by about 50% during the most active fermentation period (between 50 and 100 hours). Dissolved CO2 310 

could not be measured directly in the considered experiments but this value is consistent with data found in the 311 

literature [19] and strongly depends on the tank geometry through the parameter τ in Equations 6 and 9. Taking 312 

into account the CO2 super-saturation is the main evolution of the model considered in this paper compared to 313 

previous work [8]. It has a moderate impact on the aroma concentrations predicted by the model, particularly in 314 

time-varying operating conditions when the top pressure is decreased quickly. 315 

Aroma production model validation 316 

Measured and simulated concentrations of the aroma compound considered in this work are reported in Figure 2 317 

for the experimental run R5, not used for model derivation. The concentrations of five out of the six compounds 318 

are predicted reasonably well taking into account the scatter of the experimental data. The concentration of 319 

isoamyl acetate is significantly overestimated, however. This was already the case with previous models [11]. 320 

The measured final isoamyl acetate concentration in run R5 is one of the lowest among all runs, while the 321 

operating conditions have intermediate values. This is probably due to anomalous measurements for this 322 

particular experiment: in later runs, carried out in conditions similar to run R5, final isoamyl acetate 323 

concentrations close to 1.5 mg/L were obtained. The diacetyl is simultaneously produced and reduced during the 324 

fermentation run. The production rate decreases gradually and approaches zero at 50 hours. The diacetyl 325 

concentration reaches a maximum when the reduction rate equals the production rate and declines exponentially 326 

when the production rate becomes negligible. 327 

Producing an existing beer at a lower cost 328 

This section illustrates the reduction of the production cost for an existing sort of beer without altering its aroma 329 

profile. By “aroma profile” is meant here the set of final concentrations of the two higher alcohols and three 330 

esters considered in this work. The target aroma concentrations were those measured at the end of the run R5, 331 

that is at the central point of the experimental design. The simulated experiment corresponding to run R5 is 332 

shown in Figure 3(A). With constant temperature (13°C), constant top pressure (450 mbar above the atmospheric 333 

pressure) and a typical initial yeast concentration (10 million cells/mL) the target aroma profile is reproduced 334 

well, illustrating the adequacy of the model. The predicted fermentation time is 121 hours, in agreement with the 335 

experimental value (Figures 1 and 2). 336 

The result of applying the optimisation algorithm to the same target aroma profile is illustrated in Figure 3(B). 337 

The final predicted aroma profile matches the target equally well but the fermentation time is reduced to 338 

81 hours, that is by 33%. This is achieved by increasing the average fermentation temperature and the initial 339 

yeast concentration. The aromatic equilibrium of the final beer is maintained, however, using variable operating 340 

conditions (slightly decreasing temperature and uniformly increasing top pressure) by taking advantage of the 341 

time-varying fermentation rate and of the time-varying ester yields. The final diacetyl concentration was the 342 

same as in run R5 (0.5 mg/L): the highest diacetyl degradation rate due to higher temperature was compensated 343 

by a shorter fermentation time. 344 
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Producing new beer flavours with the same yeast strain and wort 345 

The measured aroma concentrations in four existing beer brands (coded B1 to B4, Table 4) were given as targets 346 

to the optimal control algorithm. The results for the beers B2 and B3 are shown in Figure 4. Beer B2 has a 347 

relatively high concentration of higher alcohols and a low ester concentration, while the opposite is true for beer 348 

B3. Figure 4 shows that both aroma profiles can be achieved using the same wort and yeast strain but different 349 

operating conditions: Beer B2 needs a high initial yeast concentration, a high fermentation temperature (except 350 

for the final phase) and a bell-shaped top pressure profile, while the aroma profile of beer B3 requires roughly 351 

the opposite: low initial yeast concentration, V-shaped temperature profile and a low top pressure for most of the 352 

fermentation time. Note that beer B2 is produced much faster than beer B3 (91 hours instead of 152) mainly 353 

because of the higher average temperature and of the higher initial yeast concentration. This illustrates the fact 354 

that the selected weights in the optimisation criterion (Table 3) favour the reproduction of the desired target 355 

aroma profile compared to time minimisation, which is only a secondary objective: for beer B3, the fermentation 356 

time was increased as much as needed to obtain the desired final aroma composition. 357 

It is expected, however, that not all aroma profiles can be reproduced with the given yeast strain and wort, even 358 

if the operating conditions are selected optimally in their admissible ranges. Two examples are given in Figure 5 359 

for the aroma targets of beers B1 and B4 (Table 4). The difficulty of achieving the aroma profile B1 comes from 360 

the fact a low concentration of ethyl hexanoate can not be obtained simultaneously with a high concentration of 361 

isoamyl acetate. The sensitivity of these compounds to the operating conditions (coefficients Wi,2 to Wi,8, 362 

Table 2) are very similar, meaning that their concentrations can not be manipulated independently. The best 363 

possible solution found by the optimisation algorithm (Figure 5(A)) is a compromise where the final 364 

concentration of isoamyl acetate is lower than required and that of ethyl hexanoate is higher. The concentrations 365 

of ethyl acetate and isoamyl alcohol are reproduced correctly, however, and that of phenyl ethanol is in the 366 

tolerance domain. The situation is worse for the aroma profile B4 (Figure 5(B)) because the target concentration 367 

of ethyl hexanoate is even lower and the concentration of isoamyl acetate even higher. The only compound for 368 

which the target is achieved in this case is the isoamyl alcohol. 369 

Final aroma profile robustness with respect to model uncertainty 370 

Due to the finite amount of experimental data available for model identification and to unavoidable measurement 371 

error the beer fermentation model parameters (Tables 2 and 3) can only be determined with limited accuracy. 372 

The uncertainty on the model parameters was expressed as a joint probability distribution and determined 373 

numerically (based on the so-called local Fisher information matrix) during the model fitting process [20]. The 374 

performance robustness was tested for the B2 beer by applying the pre-computed optimal operating conditions 375 

(temperature profile, top pressure profile and initial yeast concentration) to 20 models with parameters drawn at 376 

random from their respective probability distributions. The 95% confidence domain of the final aroma 377 

concentrations is shown in Figure 6(A). The confidence domain was determined as the range between the 2.5 378 

and the 97.5 percentile of the calculated values. It appears from Figure 6 that the final aroma concentrations stay 379 

within their admissible tolerance limits despite model uncertainty. This is consistent with the selection of the 380 

tolerance limits that are always larger than the model accuracy (Equation 28). 381 
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Optimal control strategy robustness with respect to model uncertainty 382 

The sensitivity of the optimal control profile to the model uncertainty was investigated for the B3 beer by 383 

performing the optimal control calculation for 20 models with parameters drawn at random from their respective 384 

probability distributions. The 95% confidence domains of the final aroma concentrations and of the associated 385 

operating conditions (temperature, top pressure and initial yeast concentration) are shown in Figure 6(B). The 386 

confidence domain was determined as the range between the 2.5 and the 97.5 percentile of the calculated values. 387 

It appears that similar optimal control policies are obtained consistently despite model parameter variations. A 388 

V-shaped temperature profile, a bell-shaped top pressure profile and a low initial yeast concentration seem to be 389 

truly characteristic to the considered combination of yeast strain, wort composition and target aroma profile. The 390 

exact values of the operating conditions are not critical, however. For example, in a practical implementation, 391 

±0.5°C variations in the wort temperature, ±200 mbar variations in the top pressure or ±0.5 million cells/mL 392 

variations in the initial yeast concentration would not affect the final beer flavour significantly. 393 

Conclusion 394 

A dynamic model of the beer fermentation process, including an alcoholic fermentation model and an aroma 395 

production model, was designed and validated. It is based on nine fermentation runs with operating conditions 396 

(temperature, top pressure and initial yeast concentration) selected according to a 23 experimental design. The 397 

model was used for the dynamic optimal control of the beer fermentation process. A primary goal was to 398 

approach pre-specified final aroma targets (two higher alcohols and three esters simultaneously) as close as 399 

possible and a secondary objective was to reduce the fermentation time and the final concentration of an 400 

undesired aroma compound (diacetyl). 401 

An optimal time-varying control policy allowed the reduction of the fermentation time of an existing sort of 402 

beer, previously produced in constant operating conditions, by 33% while preserving the final aroma 403 

concentrations of the considered compounds. The optimal control strategy also allowed the reproduction of 404 

aroma profiles of two existing commercial beers (with different higher alcohols / esters ratios) by means of the 405 

operating conditions alone, i.e. using the same yeast strain and wort. Two other existing aroma profiles could not 406 

be reproduced satisfactorily (with the same yeast strain and wort) because some aroma compounds had similar 407 

sensitivities to the considered operating conditions and could not be manipulated independently. 408 

The sensitivity of the final aroma concentrations and of the optimal control policies with respect to modelling 409 

errors was explored numerically by generating random sets of model coefficients from their joint probability 410 

distributions estimated during the model identification phase. Achievable aroma profiles stayed within the 411 

tolerance limits and consistent optimal control profiles were obtained despite model uncertainty. 412 
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Nomenclature 
Symbol Units Significance 

θ °C Wort temperature 

θabs K Absolute temperature conversion constant 

θmax °C Maximum allowed fermentation temperature 

θmin °C Minimum allowed fermentation temperature 

θset °C Set-point value for the fermentation temperature 

θtyp °C Typical fermentation temperature 

ν h-1 “Specific” CO2 production rate 

σi mg L-1 Residual standard deviation of the model for the aroma compound i 

τ h Rate constant for CO2 transfer between wort and headspace 

γ L L-1 Wort volume to headspace volume ratio 

Φθ °C h-1 Wort cooling rate. For a specified amount of wort, it corresponds to a cooling power 

Φθ max °C h-1 Maximum achievable wort cooling rate. 

Φg g L-1 h-1 Gas outflow rate from the tank (CO2 + air), per litre of wort 

Φg max g L-1 h-1 Maximum achievable gas outflow rate from the tank, per litre of wort 

ADIA mg L-1 Diacetyl concentration 

ADIA,typ mg L-1 Typical diacetyl concentration at the end of the alcoholic fermentation 

Ai mg L-1 Concentration of the aroma compound i 

Ai,org mg L-1 Organoleptically significant difference in the concentration of the aroma compound i 

Ai,tol mg L-1 Tolerance in achieving the concentration of the aroma compound i 

Ai,trg mg L-1 Target concentration for the aroma compound i 

Ca g L-1 Amount of air per litre of headspace 

Cd g L-1 Dissolved CO2 concentration 

Cd,typ g L-1 Typical dissolved CO2 concentration 

Ch g L-1 Amount of gaseous CO2 per litre of headspace 

Cp g L-1 Produced CO2 per litre of wort 

Csat g L-1 Dissolved CO2 concentration at equilibrium 

DIA  Diacetyl 

E g L-1 Ethanol concentration in the wort 

Etrg g L-1 Target ethanol concentration at the end of the alcoholic fermentation 

ETA  Ethyl acetate 

ETX  Ethyl hexanoate 

Ii none Akaike’s information criterion for the aroma compound i 

i none Index of an aroma compound. One of {ETA, ETX, IAA, IAL, PHL} 

IAA  Isoamyl acetate 

IAL  Isoamyl alcohol 

k none Sampling time index 



Kν h-1 “Specific” CO2 production rate constant 

Kνθ °C-1 Sensitivity of the CO2 production rate with respect to temperature 

KνC g-1 L Sensitivity of the CO2 production rate with respect to dissolved CO2
 concentration 

KC g L-1 Dissolved CO2 constant 

KCθ °C-1 Sensitivity of the dissolved CO2 with respect to temperature 

KE g L-1 Ethanol inhibition constant 

Kpθ h-1 Wort temperature controller parameter 

Kpp g L-1 h-1 

mbar-1 

Top pressure controller parameter 

KS g L-1 Substrate limitation constant 

KX g L-1 (106 

cells mL-1)-1 

Initial CO2 production rate constant 

Ma g mol-1 Equivalent air molar mass 

Mc g mol-1 CO2 molar mass 

ni none Number of nonzero model parameters 

nt none Number of time sampling points 

nu none Number of control variables 

nx none Number of state variables 

p mbar Total (air + CO2) top pressure in the fermentation tank 

pa mbar Partial air pressure in the headspace 

patm mbar Atmospheric pressure 

pc mbar Partial CO2 pressure in the headspace 

pmax mbar Maximum allowed top pressure in the fermentation tank 

pset mbar Set-point value for the top pressure in the fermentation tank 

PHL  Phenyl ethanol 

Q none Global optimisation criterion 

Qθ none Partial optimisation criterion for the smoothing of the wort temperature profile 

QDIA none Partial optimisation criterion for final diacetyl concentration minimisation 

Qi none Partial optimisation criterion associated to aroma compound i 

Qp none Partial optimisation criterion for the smoothing of the top pressure profile 

Qt none Partial optimisation criterion for the total fermentation time minimisation 

R mbar L mol-1 

K-1 

Perfect gas constant 

S g L-1 Fermentable sugar concentration in the wort 

Sres g L-1 Desired residual (final) fermentable sugar concentration in the wort 

t h Fermentation time since yeast inoculation 

tf h Total alcoholic fermentation time 

tf max h Maximum allowed total alcoholic fermentation time 

ttyp h Typical duration of the alcoholic fermentation 

u  Vector of the control variables 



Wθ none Weight associated to the smoothing of the wort temperature profile 

WDIA none Weight associated to the minimisation of the final diacetyl concentration 

WDIA, j none Diacetyl production and reduction model coefficients 

Wi none Weight associated to the partial optimisation criterion Qi 

Wi, j none Aroma production model coefficient j for compound i 

Wp none Weight associated to the smoothing of the top pressure profile 

Wt none Weight associated to the minimisation of the total fermentation time 

x  Vector of the state variables 

X0 106 cells mL-1 Initial yeast concentration in the wort 

X0 min 106 cells mL-1 Minimum allowed initial yeast concentration in the wort 

X0 max 106 cells mL-1 Maximum allowed initial yeast concentration in the wort 

YDIA/C mg g-1 Diacetyl versus CO2 production yield 

YE/C g g-1 Ethanol versus CO2 production yield 

Yi/C mg g-1 Yield of aroma compound i versus CO2  

YS/C g g-1 Fermentable sugar versus CO2 yield 

 



 

Table 1. Numerical values of the parameters in the alcoholic fermentation model 

 

Para

meter 

Units Value (95% confidence limits) Source 

θabs K 273.16 Unit conversion: degrees Celsius to Kelvin 

θtyp °C 13 Central point of the experimental design 

τ h 3 Separate experiment 

γ L L-1 4 Experimental protocol 

Cd,typ g L-1 2.76 Central point of the experimental design, Equation (8) 

Kν h-1 0.0446 (0.0413 … 0.0481) Maximum likelihood, runs R1-R4 and R6-R9 

Kνθ °C-1 0.132 (0.127 … 0.137) Maximum likelihood, runs R1-R4 and R6-R9 

KνC g-1 L 0.074 (0.034 … 0.113) Maximum likelihood, runs R1-R4 and R6-R9 

KC g L-1 0.0283 Tables supplied by professional brewer association 

KCθ °C-1 -0.0335 Tables supplied by professional brewer association 

KE g L-1 25.5 (22.2 … 29.2) Maximum likelihood, runs R1-R4 and R6-R9 

KS g L-1 3 Reference [11] 

KX g L-1 (106 

cells mL-1)-1 

0.145 (0.122 … 0.172) Maximum likelihood, runs R1-R4 and R6-R9 

Ma g mol-1 28.8 20% O2 + 80% N2 by volume 

Mc g mol-1 44 Chemical formula of CO2 

patm mbar 1013 760 mm Hg 

R mbar L mol-1 

K-1 

83.1 Perfect gas constant 

YE/C g g-1 1.028 (1.013 … 1.043) Reference [7] 

YS/C g g-1 1.884 (1.834 … 1.934) Reference [7] 

 

 

 



 

Table 2. Numerical values of the parameters in the aroma production model 

(In parenthesis: 95% confidence limits) 

Source: maximum likelihood estimation based on data from runs R1-R4 and R6-R9 

 

Parameter Aroma compound (i) 

 ETA ETX IAA IAL PHL DIA 

σι 2.73 0.0201 0.224 8.08 4.78 0.106 

(0.092 … 0.125) 

Wι, 1 0.0426 

(0.0386 … 0.0470) 

0.00027 

(0.00023…0.00031) 

0.0040 

(0.0037 … 0.0044) 

1.91 

(1.80 … 2.04) 

0.83 

(0.75 … 0.91) 

0.0102 

(0.0083 … 0.0124) 

Wι, 2 0.148 

(0.123 … 0.172) 

0.162 

(0.126 … 0.198) 

0.143 

(0.119 … 0.167) 

0 0.054 

(0.026 … 0.082) 

0.176 

(0.129 … 0.222) 

Wι, 3 -0.838 

(-1.001 … -0.675) 

-0.651 

(-0.797 … -0.506) 

-0.754 

(-0.876 … -0.632) 

-0.080 

(-0.147 … -0.012) 

-0.11 

(-0.22 … -0.003) 

0.203 

(0.162 … 0.255) 

Wι, 4 0 -0.045 

(-0.066 … -0.025) 

-0.034 

(-0.047 … -0.021) 

0.015 

(0.008 … 0.022) 

0.011 

(0.001 … 0.021) 

0.175 

(0.110 … 0.390) 

Wι, 5 0 0 0 0.052 

(0.033 … 0.070) 

0.036 

(0.001 … 0.071) 

NA 

Wι, 6 0.0041 

(0.0015 … 0.0066) 

0.011 

(0.005 … 0.017) 

0.0046 

(-0.0007 … 0.0099) 

0.0040 

(0.0018 … 0.0062) 

0.0052 

(0.0020 … 0.0084) 

NA 

Wι, 7 0 0 0 -0.023 

(-0.032 … -0.013) 

-0.018 

(-0.032 … -0.005) 

NA 

Wι, 8 0 0 0.0046 

(-0.0015 … 0.0106) 

0 0 NA 

 

NA = not applicable 

 



 

Table 3. Numerical values of the optimal control problem parameters. 

 

Parameter Units Value  Parameter Units Value  Parameter Units Value 

θmax °C 16  Kpθ h-1 5  WETX none 1 

θmin °C 10  Kpp g L-1 h-1 mbar-1 5 × 10-4  WIAA none 1 

Φθ max °C h-1 0.5  nt none 49  WIAL none 1 

Φg max g L-1 h-1 2  pmax mbar 1813  WPHL none 1 

ADIA,typ mg L-1 0.1  Sres g L-1 1  Wp none 2 × 10-4 

AETA,org mg L-1 2.5  tf max h 200  Wt none 0.1 

AETX,org mg L-1 0.02  ttyp h 100  X0 min 106 cells 

mL-1 

5 

AIAA,org mg L-1 0.20  Wθ none 2 × 10-4  X0 max 106 cells 

mL-1 

20 

AIAL,org mg L-1 5  WDIA none 0.1     

APHL,org mg L-1 4  WETA none 1     

 

 

 

 

 

 



 

Table 4. Target ethanol and aroma compound concentrations 

 

Beer sort Etrg 

g L-1 

AETA,trg 

mg L-1 

AETX,trg 

mg L-1 

AIAA,trg 

mg L-1 

AIAL,trg 

mg L-1 

APHL,trg 

mg L-1 

R5a 40 15 0.115 1.0 77 34 

B1b 38 20 0.135 3.1 67 37 

B2b 48 18 0.086 1.6 96 47 

B3b 48 28 0.225 3.8 70 30 

B4b 40 28 0.125 4.1 62 22 

 
a Final ethanol and aroma concentrations measured in run R5 
b Ethanol and aroma concentrations measured in commercial beers 

 

 



Figure legends 
 

Figure 1. Alcoholic fermentation model validation. Data from run R5, not used for model identification. 

Measured values (o) and simulated values (). 

 

Figure 2. Aroma production model validation. Data from run R5, not used for model identification. Measured 

values (o) and simulated values (). 

 

Figure 3. Fermentation time reduction of an existing beer without changing the final aroma profile. (A) Constant 

operating conditions corresponding to run R5. (B) Time-varying operating condition determined by the dynamic 

optimisation algorithm. Top: aroma concentrations at the end of the alcoholic fermentation. Bottom: operating 

conditions for the alcoholic fermentation process. Target values (o), admissible range (⋅ ⋅ ⋅) at ± 2Ai,tol and 

predicted values ().  

 

Figure 4. Different final aroma profiles obtained with the same yeast strain and wort. (A) Beer B2. (B)  Beer B3. 

Top: aroma concentrations at the end of the alcoholic fermentation. Bottom: operating conditions for the 

alcoholic fermentation process. Target values (o), admissible range (⋅ ⋅ ⋅) ±2 Ai,tol and predicted values ().  

 

Figure 5. Aroma profiles impossible to achieve with the considered yeast strain and wort. (A) Beer B1. (B)  Beer 

B4. Top: aroma concentrations at the end of the alcoholic fermentation. Bottom: operating conditions for the 

alcoholic fermentation process. Target values (o), admissible range (⋅ ⋅ ⋅) at ±2 Ai,tol and predicted values ().  

 

Figure 6. Sensitivity of the final aroma concentration and of the optimal control strategy to modelling errors. 

(A) The optimal control policy for beer B2 was applied without change to 20 possible model parameter sets. 

(B) The optimal control policy for beer B3 was recomputed for 20 possible model parameter sets. Top: aroma 

concentrations at the end of the alcoholic fermentation. Bottom: operating conditions for the alcoholic 

fermentation process. Target values (o), admissible range (⋅ ⋅ ⋅) at ±2 Ai,tol and 95% confidence intervals for the 

predicted values ().  
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Figure 2     
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Figure 3.  
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Figure 4.   
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