S. E. Alvarez and K. B. Harikumar, Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2, Nature, vol.20, issue.7301, pp.1084-1092, 2010.
DOI : 10.1038/nature09128

S. Aronova and K. Wedaman, Regulation of Ceramide Biosynthesis by TOR Complex 2, Cell Metabolism, vol.7, issue.2, pp.148-58, 2008.
DOI : 10.1016/j.cmet.2007.11.015

L. Bach and L. Michaelson, The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development, Proc. Natl. Acad. USA 105, pp.14727-14731, 2008.
DOI : 10.1074/jbc.M605158200

W. P. Barz and P. Walter, Two Endoplasmic Reticulum () Membrane Proteins That Facilitate ER-to-Golgi Transport of Glycosylphosphatidylinositol-anchored Proteins, Molecular Biology of the Cell, vol.10, issue.4, pp.1043-59, 1999.
DOI : 10.1091/mbc.10.4.1043

F. Beaudoin and X. Wu, Functional Characterization of the Arabidopsis ??-Ketoacyl-Coenzyme A Reductase Candidates of the Fatty Acid Elongase, PLANT PHYSIOLOGY, vol.150, issue.3, pp.1174-91, 2009.
DOI : 10.1104/pp.109.137497

C. Bedia and G. Triola, Analogs of the dihydroceramide desaturase inhibitor GT11 modified at the amide function: synthesis and biological activities, Organic & Biomolecular Chemistry, vol.1633, issue.20, pp.3707-3719, 2005.
DOI : 10.1039/b510198k

J. J. Benschop and S. Mohammed, Quantitative Phosphoproteomics of Early Elicitor Signaling in Arabidopsis, Molecular & Cellular Proteomics, vol.6, issue.7, pp.1198-214, 2007.
DOI : 10.1074/mcp.M600429-MCP200

A. Blagoveshchenskaya and P. Mayinger, SAC1 lipid phosphatase and growth control of the secretory pathway, Mol. BioSyst., vol.275, issue.2, pp.36-42, 2009.
DOI : 10.1039/B810979F

D. K. Breslow, Sphingolipid Homeostasis in the Endoplasmic Reticulum and Beyond, Cold Spring Harbor Perspectives in Biology, vol.5, issue.4, p.13326, 2013.
DOI : 10.1101/cshperspect.a013326

D. K. Breslow and S. R. Collins, Orm family proteins mediate sphingolipid homeostasis, Nature, vol.23, issue.7284, pp.1048-53, 2010.
DOI : 10.1038/nature08787

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877384

P. Brodersen and M. Petersen, Knockout of Arabidopsis ACCELERATED-CELL-DEATH11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense, Genes & Development, vol.16, issue.4, pp.490-502, 2002.
DOI : 10.1101/gad.218202

D. Y. Chao and K. Gable, Sphingolipids in the Root Play an Important Role in Regulating the Leaf Ionome in Arabidopsis thaliana, The Plant Cell, vol.23, issue.3, pp.1061-81, 2011.
DOI : 10.1105/tpc.110.079095

M. Chen and G. Han, The Essential Nature of Sphingolipids in Plants as Revealed by the Functional Identification and Characterization of the Arabidopsis LCB1 Subunit of Serine Palmitoyltransferase, THE PLANT CELL ONLINE, vol.18, issue.12, pp.3576-93, 2006.
DOI : 10.1105/tpc.105.040774

M. Chen and J. E. Markham, Sphingolipid ??8 unsaturation is important for glucosylceramide biosynthesis and low-temperature performance in Arabidopsis, The Plant Journal, vol.20, issue.5, pp.769-81, 2012.
DOI : 10.1111/j.1365-313X.2011.04829.x

M. Chen and J. E. Markham, Sphingolipid Long-Chain Base Hydroxylation Is Important for Growth and Regulation of Sphingolipid Content and Composition in Arabidopsis, THE PLANT CELL ONLINE, vol.20, issue.7, pp.1862-78, 2008.
DOI : 10.1105/tpc.107.057851

L. Coderch and O. Lopez, Ceramides and Skin Function, American Journal of Clinical Dermatology, vol.22, issue.2, pp.107-136, 2003.
DOI : 10.2165/00128071-200304020-00004

S. Coursol and L. M. Fan, Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins, Nature, vol.423, issue.6940, pp.651-655, 2003.
DOI : 10.1038/nature01643

O. Cuvillier and T. Levade, and Smac/DIABLO from mitochondria, Blood, vol.98, issue.9, pp.2828-2864, 2001.
DOI : 10.1182/blood.V98.9.2828

D. Angelo, G. Uemura, and T. , Vesicular and non-vesicular transport feed distinct glycosylation pathways in the Golgi, Nature, 2013.

D. Mello, N. , P. Childress, and A. M. , Cloning and characterization of LAG1, a longevity-assurance gene in yeast, J Biol Chem, vol.269, issue.22, pp.15451-15460, 1994.

J. L. Dawkins and D. J. Hulme, Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I, Nature Genetics, vol.27, issue.3, pp.309-321, 2001.
DOI : 10.1038/85879

S. Dreschers and P. Franz, Infections with Human Rhinovirus Induce the Formation of Distinct Functional Membrane Domains, Cellular Physiology and Biochemistry, vol.20, issue.1-4, pp.1-4, 2007.
DOI : 10.1159/000104170

C. Dutilleul and G. Benhassaine-kesri, Phytosphingosine-phosphate is a signal for AtMPK6 activation and Arabidopsis response to chilling, New Phytologist, vol.1758, issue.1, pp.181-91, 2012.
DOI : 10.1111/j.1469-8137.2011.04017.x

URL : https://hal.archives-ouvertes.fr/hal-01161803

N. K. Egilmez and J. B. Chen, Specific alterations in transcript prevalence during the yeast life span, J Biol Chem, vol.264, issue.24, pp.14312-14319, 1989.

K. Endo and T. Akiyama, Degenerative spermatocyte, a novel gene encoding a transmembrane protein required for the initiation of meiosis in Drosophila spermatogenesis, Mol Gen Genet, vol.253, issue.12, pp.157-65, 1996.

M. Eto and J. Bennouna, C16 ceramide accumulates following androgen ablation in LNCaP prostate cancer cells, The Prostate, vol.341, issue.1, pp.66-79, 2003.
DOI : 10.1002/pros.10275

A. H. Futerman and Y. A. Hannun, The complex life of simple sphingolipids, EMBO reports, vol.64, issue.8, pp.777-82, 2004.
DOI : 10.1074/jbc.M401205200

B. Gaigg and T. B. Neergaard, Depletion of Acyl-Coenzyme A-Binding Protein Affects Sphingolipid Synthesis and Causes Vesicle Accumulation and Membrane Defects in Saccharomyces cerevisiae, Molecular Biology of the Cell, vol.12, issue.4, pp.1147-60, 2001.
DOI : 10.1091/mbc.12.4.1147

F. Garcia-maroto and J. A. Garrido-cardenas, Cloning and molecular characterisation of a ??8-sphingolipid-desaturase from Nicotiana tabacum closely related to ??6-acyl-desaturases, Plant Molecular Biology, vol.217, issue.3, pp.241-50, 2007.
DOI : 10.1007/s11103-007-9148-9

C. S. Garris and V. A. Blaho, Sphingosine-1-phosphate receptor 1 signalling in T cells: trafficking and beyond, Immunology, vol.201, issue.3, pp.347-53, 2014.
DOI : 10.1111/imm.12272

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080950

W. C. Gelderblom and K. Jaskiewicz, Fumonisins: Novel mycotoxins with cancerpromoting activity produced by Fusarium moniliforme, Appl Environ Microbiol, vol.54, issue.7, pp.1806-1817, 1988.

W. C. Gelderblom and N. P. Kriek, , in rats, Carcinogenesis, vol.12, issue.7, pp.1247-51, 1991.
DOI : 10.1093/carcin/12.7.1247

W. C. Gelderblom and S. Lebepe-mazur, Toxicological effects in rats chronically fed low dietary levels of fumonisin B1, Toxicology, vol.161, issue.1-2, pp.39-51, 2001.
DOI : 10.1016/S0300-483X(00)00459-5

I. Gombos and E. Kiss, Cholesterol and sphingolipids as lipid organizers of the immune cells??? plasma membrane: Their impact on the functions of MHC molecules, effector T-lymphocytes and T-cell death, Immunology Letters, vol.104, issue.1-2, pp.59-69, 2006.
DOI : 10.1016/j.imlet.2005.11.021

P. J. Gonzalez-cabrera and S. Brown, S1P signaling: new therapies and opportunities, F1000Prime Reports, vol.6, p.109, 2014.
DOI : 10.12703/P6-109

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4251414

D. Goswami and K. Gowrishankar, Nanoclusters of GPI-Anchored Proteins Are Formed by Cortical Actin-Driven Activity, Cell, vol.135, issue.6, pp.1085-97, 2008.
DOI : 10.1016/j.cell.2008.11.032

G. A. Grabowski and S. Gatt, Acid ??-Glucosidase: Enzymology and Molecular Biology of Gaucher Diseas, Critical Reviews in Biochemistry and Molecular Biology, vol.87, issue.6, pp.385-414, 1990.
DOI : 10.3109/10409239009090616

M. S. Grison and L. Brocard, Specific Membrane Lipid Composition Is Important for Plasmodesmata Function in Arabidopsis, The Plant Cell, vol.27, issue.4, 2015.
DOI : 10.1105/tpc.114.135731

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4558693

I. Guillas and P. A. Kirchman, C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p, The EMBO Journal, vol.20, issue.11, pp.2655-65, 2001.
DOI : 10.1093/emboj/20.11.2655

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC125493

N. C. Hait and J. Allegood, Regulation of Histone Acetylation in the Nucleus by Sphingosine-1-Phosphate, Science, vol.434, issue.1, pp.1254-1261, 2009.
DOI : 10.1016/S0076-6879(07)34014-7

N. C. Hait and K. Fujita, Lcb4p sphingoid base kinase localizes to the Golgi and late endosomes, FEBS Letters, vol.19, issue.1-2, pp.97-102, 2002.
DOI : 10.1016/S0014-5793(02)03636-0

G. Han and K. Gable, The Saccharomyces cerevisiae YBR159w Gene Encodes the 3-Ketoreductase of the Microsomal Fatty Acid Elongase, Journal of Biological Chemistry, vol.277, issue.38, pp.35440-35449, 2002.
DOI : 10.1074/jbc.M205620200

S. Han and M. A. Lone, Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control, Proceedings of the National Academy of Sciences, vol.106, issue.7, pp.5851-5857, 2009.
DOI : 10.1073/pnas.0811700106

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851911

S. Han and M. A. Lone, Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control, Proceedings of the National Academy of Sciences, vol.106, issue.7, pp.5851-5857, 2010.
DOI : 10.1073/pnas.0811700106

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851911

K. Hanada and K. Kumagai, Molecular machinery for non-vesicular trafficking of ceramide, Nature, vol.426, issue.6968, pp.803-812, 2003.
DOI : 10.1038/nature02188

Y. A. Hannun and L. M. Obeid, Principles of bioactive lipid signalling: lessons from sphingolipids, Nature Reviews Molecular Cell Biology, vol.449, issue.2, pp.139-50, 2008.
DOI : 10.1038/nrm2329

D. Hartmann and J. Lucks, Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth, The International Journal of Biochemistry & Cell Biology, vol.44, issue.4, pp.620-628, 2012.
DOI : 10.1016/j.biocel.2011.12.019

M. R. Hojjati and Z. Li, Serine palmitoyl-CoA transferase (SPT) deficiency and sphingolipid levels in mice, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1737, issue.1, pp.44-51, 2005.
DOI : 10.1016/j.bbalip.2005.08.006

P. W. Holland and H. A. Booth, Classification and nomenclature of all human homeobox genes, BMC Biology, vol.5, issue.1, p.47, 2007.
DOI : 10.1186/1741-7007-5-47

W. Hu and R. Xu, Golgi Fragmentation Is Associated with Ceramide-induced Cellular Effects, Molecular Biology of the Cell, vol.16, issue.3, pp.1555-67, 2005.
DOI : 10.1091/mbc.E04-07-0594

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC551515

K. Huitema and J. Van-den-dikkenberg, Identification of a family of animal sphingomyelin synthases, The EMBO Journal, vol.23, issue.1, pp.33-44, 2004.
DOI : 10.1038/sj.emboj.7600034

Y. Igarashi and S. Hakomori, Effect of chemically well-defined sphingosine and its N-methyl derivatives on protein kinase C and src kinase activities, Biochemistry, vol.28, issue.17, pp.6796-800, 1989.
DOI : 10.1021/bi00443a002

H. Imai and H. Nishiura, Phosphorylation of Sphingoid Long-chain Bases in Arabidopsis: Functional Characterization and Expression of the First Sphingoid Long-chain Base Kinase Gene in Plants, Plant and Cell Physiology, vol.46, issue.2, pp.375-80, 2005.
DOI : 10.1093/pcp/pci023

M. N. Islam and M. P. Jacquemot, Sphingosine in plants - more riddles from the Sphinx?, New Phytologist, vol.688, issue.1, pp.51-58, 2012.
DOI : 10.1111/j.1469-8137.2011.03963.x

S. Iwaki and T. Sano, Intracellular Trafficking Pathway of Yeast Long-chain Base Kinase Lcb4, from Its Synthesis to Its Degradation, Journal of Biological Chemistry, vol.282, issue.39, pp.28485-92, 2007.
DOI : 10.1074/jbc.M701607200

W. D. Jarvis, F. A. Fornari, and . Jr, Coordinate regulation of stress-and mitogenactivated protein kinases in the apoptotic actions of ceramide and sphingosine, Mol Pharmacol, vol.52, issue.6, pp.935-982, 1997.

A. B. Jefferson and H. Schulman, Sphingosine inhibits calmodulin-dependent enzymes, J Biol Chem, vol.263, issue.30, pp.15241-15245, 1988.

G. M. Jenkins and Y. A. Hannun, Role for de Novo Sphingoid Base Biosynthesis in the Heat-induced Transient Cell Cycle Arrest of Saccharomyces cerevisiae, Journal of Biological Chemistry, vol.276, issue.11, pp.8574-81, 2001.
DOI : 10.1074/jbc.M007425200

J. C. Jiang and P. A. Kirchman, Suppressor analysis points to the subtle role of the LAG1 ceramide synthase gene in determining yeast longevity, Experimental Gerontology, vol.39, issue.7, pp.999-1009, 2004.
DOI : 10.1016/j.exger.2004.03.026

J. Joubes and S. Raffaele, The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling, Plant Molecular Biology, vol.17, issue.5, pp.547-66, 2008.
DOI : 10.1007/s11103-008-9339-z

K. Kagedal and M. Zhao, Sphingosine-induced apoptosis is dependent on lysosomal proteases, Biochemical Journal, vol.359, issue.2, pp.335-378, 2001.
DOI : 10.1042/bj3590335

A. N. Kimberlin and S. Majumder, Arabidopsis 56-Amino Acid Serine Palmitoyltransferase-Interacting Proteins Stimulate Sphingolipid Synthesis, Are Essential, and Affect Mycotoxin Sensitivity, The Plant Cell, vol.25, issue.11, pp.4627-4666, 2013.
DOI : 10.1105/tpc.113.116145

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875740

S. Koybasi and C. E. Senkal, -Ceramide and Longevity Assurance Gene 1 in Human Head and Neck Squamous Cell Carcinomas, Journal of Biological Chemistry, vol.279, issue.43, pp.44311-44320, 2004.
DOI : 10.1074/jbc.M406920200

URL : https://hal.archives-ouvertes.fr/in2p3-00454619

C. Lachaud, D. Silva, and D. , Nuclear calcium controls the apoptotic-like cell death induced by d-erythro-sphinganine in tobacco cells, Cell Calcium, vol.47, issue.1, pp.92-100, 2009.
DOI : 10.1016/j.ceca.2009.11.011

URL : https://hal.archives-ouvertes.fr/hal-01203919

E. Lauwers and B. Andre, Association of Yeast Transporters with Detergent-Resistant Membranes Correlates with Their Cell-Surface Location, Traffic, vol.24, issue.8, pp.1045-59, 2006.
DOI : 10.1111/j.1600-0854.2006.00445.x

R. L. Lester and R. C. Dickson, High-Performance Liquid Chromatography Analysis of Molecular Species of Sphingolipid-Related Long Chain Bases and Long Chain Base Phosphates in Saccharomyces cerevisiae after Derivatization with 6-Aminoquinolyl-N-hydroxysuccinimidyl Carbamate, Analytical Biochemistry, vol.298, issue.2, pp.283-92, 2001.
DOI : 10.1006/abio.2001.5368

A. Levine and R. Tenhaken, H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response, Cell, vol.79, issue.4, pp.583-93, 1994.
DOI : 10.1016/0092-8674(94)90544-4

T. P. Levine and C. A. Wiggins, Inositol Phosphorylceramide Synthase Is Located in the Golgi Apparatus of Saccharomyces cerevisiae, Molecular Biology of the Cell, vol.11, issue.7, pp.2267-81, 2000.
DOI : 10.1091/mbc.11.7.2267

H. Liang and N. Yao, Ceramides modulate programmed cell death in plants, Genes & Development, vol.17, issue.21, pp.2636-2677, 2003.
DOI : 10.1101/gad.1140503

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC280613

D. Lingwood and K. Simons, Lipid Rafts As a Membrane-Organizing Principle, Science, vol.5, issue.8, pp.46-50, 2010.
DOI : 10.1038/ncb0803-684

M. Liu and C. Huang, Regulation of sphingolipid synthesis through Orm1 and Orm2 in yeast, Journal of Cell Science, vol.125, issue.10, pp.2428-2463, 2012.
DOI : 10.1242/jcs.100578

D. V. Lynch and M. Chen, Lipid signaling in Arabidopsis: no sphingosine? No problem!, Trends in Plant Science, vol.14, issue.9, pp.463-469, 2009.
DOI : 10.1016/j.tplants.2009.06.008

D. V. Lynch and T. M. Dunn, An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function, New Phytologist, vol.463, issue.3, pp.677-702, 2004.
DOI : 10.1111/j.1469-8137.2004.00992.x

S. M. Mandala and R. Thornton, Sphingoid base 1-phosphate phosphatase: A key regulator of sphingolipid metabolism and stress response, Proceedings of the National Academy of Sciences, vol.270, issue.22, pp.150-155, 1998.
DOI : 10.1074/jbc.270.22.13171

C. Mao and L. M. Obeid, Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1781, issue.9, pp.424-458, 2008.
DOI : 10.1016/j.bbalip.2008.06.002

W. F. Marasas and N. P. Kriek, Primary liver cancer and oesophageal basal cell hyperplasia in rats caused byfusarium moniliforme, International Journal of Cancer, vol.40, issue.3, pp.383-390, 1984.
DOI : 10.1002/ijc.2910340315

J. Marion and L. Bach, Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings, The Plant Journal, vol.46, issue.1, pp.169-79, 2008.
DOI : 10.1111/j.1365-313X.2008.03596.x

J. E. Markham and J. G. Jaworski, Rapid measurement of sphingolipids fromArabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry, Rapid Communications in Mass Spectrometry, vol.39, issue.7, pp.1304-1318, 2007.
DOI : 10.1002/rcm.2962

J. E. Markham and J. Li, Separation and Identification of Major Plant Sphingolipid Classes from Leaves, Journal of Biological Chemistry, vol.281, issue.32, pp.22684-94, 2006.
DOI : 10.1074/jbc.M604050200

M. Mattie and G. Brooker, Sphingosine-1-phosphate, a putative second messenger, mobilizes calcium from internal stores via an inositol trisphosphate-independent pathway, J Biol Chem, vol.269, issue.5, pp.3181-3189, 1994.

S. Melser and B. Batailler, Glucosylceramide Biosynthesis is Involved in Golgi Morphology and Protein Secretion in Plant Cells, Traffic, vol.275, issue.4, pp.479-90, 2010.
DOI : 10.1111/j.1600-0854.2009.01030.x

URL : https://hal.archives-ouvertes.fr/hal-01203898

S. Melser and V. Wattelet-boyer, Blocking ER export of the Golgi SNARE SYP31 affects plant growth, Plant Signaling & Behavior, vol.16, issue.10, pp.962-966, 2009.
DOI : 10.1074/jbc.M300659200

A. H. Merrill, . Jr, and G. Van-echten, Fumonisin B1 inhibits sphingosine (sphinganine) N-acyltransferase and de novo sphingolipid biosynthesis in cultured neurons in situ, J Biol Chem, vol.268, issue.36, pp.27299-306, 1993.

A. H. Merrill, . Jr, and E. Wang, Fumonisins and other inhibitors of de novo sphingolipid biosynthesis, Adv Lipid Res, vol.26, pp.215-249, 1993.

L. V. Michaelson and S. Zauner, Functional Characterization of a Higher Plant Sphingolipid ??4-Desaturase: Defining the Role of Sphingosine and Sphingosine-1-Phosphate in Arabidopsis, PLANT PHYSIOLOGY, vol.149, issue.1, pp.487-98, 2009.
DOI : 10.1104/pp.108.129411

J. G. Mina and Y. Okada, Functional analyses of differentially expressed isoforms of the Arabidopsis inositol phosphorylceramide synthase, Plant Molecular Biology, vol.463, issue.4-5, pp.4-5, 2010.
DOI : 10.1007/s11103-010-9626-3

Y. Mizutani and S. Mitsutake, Ceramide biosynthesis in keratinocyte and its role in skin function, Biochimie, vol.91, issue.6, pp.784-90, 2009.
DOI : 10.1016/j.biochi.2009.04.001

D. Molino and T. Galli, Biogenesis and transport of membrane domains-potential implications in brain pathologies, Biochimie, vol.96, pp.75-84, 2014.
DOI : 10.1016/j.biochi.2013.09.014

URL : https://hal.archives-ouvertes.fr/hal-00880086

D. Molino and E. Van-der-giessen, Inhibition of very long acyl chain sphingolipid synthesis modifies membrane dynamics during plant cytokinesis, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1841, issue.10, pp.1422-1452, 2014.
DOI : 10.1016/j.bbalip.2014.06.014

URL : https://hal.archives-ouvertes.fr/hal-01204151

P. Moreau and J. J. Bessoule, Lipid trafficking in plant cells, Progress in Lipid Research, vol.37, issue.6, pp.371-91, 1998.
DOI : 10.1016/S0163-7827(98)00016-2

M. M. Nagiec and M. Skrzypek, The LCB4 (YOR171c) and LCB5(YLR260w) Genes of Saccharomyces Encode Sphingoid Long Chain Base Kinases, Journal of Biological Chemistry, vol.273, issue.31, pp.19437-19479, 1998.
DOI : 10.1074/jbc.273.31.19437

T. Nakamura and K. Yonesu, Synthesis and SAR studies of a novel class of S1P1 receptor antagonists, Bioorganic & Medicinal Chemistry, vol.15, issue.10, pp.3548-64, 2007.
DOI : 10.1016/j.bmc.2007.02.048

C. K. Ng and K. Carr, erratum: Drought-induced guard cell signal transduction involves sphingosine-1-phosphate, Nature, vol.410, issue.6834, pp.596-605, 2001.
DOI : 10.1038/35075627

C. S. Oh and D. A. Toke, ELO2 and ELO3, Homologues of theSaccharomyces cerevisiae ELO1 Gene, Function in Fatty Acid Elongation and Are Required for Sphingolipid Formation, Journal of Biological Chemistry, vol.272, issue.28, pp.17376-84, 1997.
DOI : 10.1074/jbc.272.28.17376

Y. Ohno and S. Suto, ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis, Proceedings of the National Academy of Sciences, vol.36, issue.2, pp.18439-18483, 2010.
DOI : 10.1016/j.ymeth.2005.01.009

Y. Osawa and H. Uchinami, Roles for C16-ceramide and Sphingosine 1-Phosphate in Regulating Hepatocyte Apoptosis in Response to Tumor Necrosis Factor-??, Journal of Biological Chemistry, vol.280, issue.30, pp.27879-87, 2005.
DOI : 10.1074/jbc.M503002200

H. A. Ozkara, Recent advances in the biochemistry and genetics of sphingolipidoses, Brain and Development, vol.26, issue.8, pp.497-505, 2004.
DOI : 10.1016/j.braindev.2004.01.005

M. O. Pata and Y. A. Hannun, Plant sphingolipids: decoding the enigma of the Sphinx, New Phytologist, vol.133, issue.3, pp.611-641, 2010.
DOI : 10.1111/j.1469-8137.2009.03123.x

M. O. Pata and B. X. Wu, Molecular cloning and characterization of OsCDase, a ceramidase enzyme from rice, The Plant Journal, vol.279, issue.6, 2008.
DOI : 10.1111/j.1365-313X.2008.03569.x

B. J. Pettus and J. Bielawski, The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and, 2003.

Y. Pewzner-jung and S. Ben-dor, When Do Lasses (Longevity Assurance Genes) Become CerS (Ceramide Synthases)?: INSIGHTS INTO THE REGULATION OF CERAMIDE SYNTHESIS, Journal of Biological Chemistry, vol.281, issue.35, pp.25001-25006, 2006.
DOI : 10.1074/jbc.R600010200

Y. Pewzner-jung and . Park, A Critical Role for Ceramide Synthase 2 in Liver Homeostasis: I. ALTERATIONS IN LIPID METABOLIC PATHWAYS, Journal of Biological Chemistry, vol.285, issue.14, pp.10902-10912, 2010.
DOI : 10.1074/jbc.M109.077594

J. G. Pienaar and T. S. Kellerman, Field outbreaks of leukoencephalomalacia in horses consuming maize infected by Fusarium verticillioides (= F. moniliforme) in South Africa, J S Afr Vet Assoc, vol.52, issue.1, pp.21-25, 1981.

S. E. Ping and G. L. Barrett, Ceramide can induce cell death in sensory neurons, whereas ceramide analogues and sphingosine promote survival, Journal of Neuroscience Research, vol.92, issue.2, pp.206-219, 1998.
DOI : 10.1002/(SICI)1097-4547(19981015)54:2<206::AID-JNR8>3.0.CO;2-I

S. Ponnusamy and M. Meyers-needham, Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance, Future Oncology, vol.6, issue.10, pp.1603-1627, 2010.
DOI : 10.2217/fon.10.116

C. J. Rabie and W. F. Marasas, Moniliformin production and toxicity of different Fusarium species from Southern Africa, Appl Environ Microbiol, vol.43, issue.3, pp.517-538, 1982.

S. Raffaele and F. Vailleau, A MYB Transcription Factor Regulates Very-Long-Chain Fatty Acid Biosynthesis for Activation of the Hypersensitive Cell Death Response in Arabidopsis, THE PLANT CELL ONLINE, vol.20, issue.3, pp.752-67, 2008.
DOI : 10.1105/tpc.107.054858

URL : https://hal.archives-ouvertes.fr/hal-00347382

C. Riebeling and J. C. Allegood, Two Mammalian Longevity Assurance Gene (LAG1) Family Members, trh1 and trh4, Regulate Dihydroceramide Synthesis Using Different Fatty Acyl-CoA Donors, Journal of Biological Chemistry, vol.278, issue.44, pp.43452-43461, 2003.
DOI : 10.1074/jbc.M307104200

D. Rispal and S. Eltschinger, Target of Rapamycin Complex 2 Regulates Actin Polarization and Endocytosis via Multiple Pathways, Journal of Biological Chemistry, vol.290, issue.24, 2015.
DOI : 10.1074/jbc.M114.627794

. Rivas-san-vicente, M. Larios-zarate, and G. , Disruption of sphingolipid biosynthesis in Nicotiana benthamiana activates salicylic acid-dependent responses and compromises resistance to Alternaria alternata f. sp. lycopersici, Planta, vol.62, issue.1, pp.121-157, 2013.
DOI : 10.1007/s00425-012-1758-z

J. R. Rohde and M. E. Cardenas, The Tor Pathway Regulates Gene Expression by Linking Nutrient Sensing to Histone Acetylation, Molecular and Cellular Biology, vol.23, issue.2, pp.629-664, 2003.
DOI : 10.1128/MCB.23.2.629-635.2003

H. Rosen and P. J. Gonzalez-cabrera, Sphingosine 1-Phosphate Receptor Signaling, Annual Review of Biochemistry, vol.78, issue.1, pp.743-68, 2009.
DOI : 10.1146/annurev.biochem.78.072407.103733

J. Schneider-schaulies and S. Schneider-schaulies, Abstract, Biological Chemistry, vol.396, issue.6-7, pp.6-7, 2015.
DOI : 10.1515/hsz-2014-0273

S. Schorling and B. Vallee, Lag1p and Lac1p Are Essential for the Acyl-CoA-dependent Ceramide Synthase Reaction in Saccharomyces cerevisae, Molecular Biology of the Cell, vol.12, issue.11, pp.3417-3444, 2001.
DOI : 10.1091/mbc.12.11.3417

E. H. Schuchman, Acid sphingomyelinase, cell membranes and human disease: Lessons from Niemann-Pick disease, FEBS Letters, vol.122, issue.9, pp.1895-900, 2010.
DOI : 10.1016/j.febslet.2009.11.083

C. E. Senkal and S. Ponnusamy, Alteration of Ceramide Synthase 6/C16-Ceramide Induces Activating Transcription Factor 6-mediated Endoplasmic Reticulum (ER) Stress and Apoptosis via Perturbation of Cellular Ca2+ and ER/Golgi Membrane Network, Journal of Biological Chemistry, vol.286, issue.49, pp.42446-58, 2011.
DOI : 10.1074/jbc.M111.287383

Y. J. Seo and C. J. Pritzl, Sphingosine Kinase 1 Serves as a Pro-Viral Factor by Regulating Viral RNA Synthesis and Nuclear Export of Viral Ribonucleoprotein Complex upon Influenza Virus Infection, PLoS ONE, vol.23, issue.8, p.75005, 2013.
DOI : 10.1371/journal.pone.0075005.s004

J. Shi and L. Wei, Rho kinase in the regulation of cell death and survival, Archivum Immunologiae et Therapiae Experimentalis, vol.55, issue.2, pp.61-75, 2007.
DOI : 10.1007/s00005-007-0009-7

M. Sorice and T. Garofalo, Evidence for cell surface association between CXCR4 and ganglioside GM3 after gp120 binding in SupT1 lymphoblastoid cells, FEBS Letters, vol.272, issue.1, pp.55-60, 2001.
DOI : 10.1016/S0014-5793(01)02830-7

S. D. Spassieva and J. E. Markham, prevents disruption of sphingolipid metabolism during AAL-toxin-induced programmed cell death, The Plant Journal, vol.24, issue.4, pp.561-72, 2002.
DOI : 10.1046/j.1365-313X.2002.01444.x

P. Sperling and S. Franke, Are glucocerebrosides the??predominant sphingolipids in??plant plasma membranes?, Plant Physiology and Biochemistry, vol.43, issue.12, pp.1031-1039, 2005.
DOI : 10.1016/j.plaphy.2005.10.004

P. Sperling and E. Heinz, Plant sphingolipids: structural diversity, biosynthesis, first genes and functions, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1632, issue.1-3, pp.1-3, 2003.
DOI : 10.1016/S1388-1981(03)00033-7

P. Sperling and U. Zahringer, A Sphingolipid Desaturase from Higher Plants: IDENTIFICATION OF A NEW CYTOCHROME b 5FUSION PROTEIN, Journal of Biological Chemistry, vol.273, issue.44, pp.28590-28596, 1998.
DOI : 10.1074/jbc.273.44.28590

Y. Sun and Y. Miao, Orm protein phosphoregulation mediates transient sphingolipid biosynthesis response to heat stress via the Pkh-Ypk and Cdc55-PP2A pathways, Molecular Biology of the Cell, vol.23, issue.12, pp.2388-98, 2012.
DOI : 10.1091/mbc.E12-03-0209

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374756

F. G. Tafesse and K. Huitema, Both Sphingomyelin Synthases SMS1 and SMS2 Are Required for Sphingomyelin Homeostasis and Growth in Human HeLa Cells, Journal of Biological Chemistry, vol.282, issue.24, pp.17537-17584, 2007.
DOI : 10.1074/jbc.M702423200

K. Tamura and N. Mitsuhashi, Characterization of an Arabidopsis cDNA Encoding a Subunit of Serine Palmitoyltransferase, the Initial Enzyme in Sphingolipid Biosynthesis, Plant and Cell Physiology, vol.42, issue.11, pp.1274-81, 2001.
DOI : 10.1093/pcp/pce165

F. Tellier and A. Maia-grondard, Comparative plant sphingolipidomic reveals specific lipids in seeds and oil, Phytochemistry, vol.103, pp.50-58, 2014.
DOI : 10.1016/j.phytochem.2014.03.023

URL : https://hal.archives-ouvertes.fr/hal-01024458

C. Teng and H. Dong, Serine Palmitoyltransferase, a Key Enzyme for de Novo Synthesis of Sphingolipids, Is Essential for Male Gametophyte Development in Arabidopsis, PLANT PHYSIOLOGY, vol.146, issue.3, pp.1322-1354, 2008.
DOI : 10.1104/pp.107.113506

P. Ternes and S. Franke, Identification and Characterization of a Sphingolipid Delta 4-Desaturase Family, Journal of Biological Chemistry, vol.277, issue.28, pp.25512-25520, 2002.
DOI : 10.1074/jbc.M202947200

Y. Tsegaye and C. G. Richardson, Arabidopsis Mutants Lacking Long Chain Base Phosphate Lyase Are Fumonisin-sensitive and Accumulate Trihydroxy-18:1 Long Chain Base Phosphate, Journal of Biological Chemistry, vol.282, issue.38, pp.28195-206, 2007.
DOI : 10.1074/jbc.M705074200

B. Vallee and H. Riezman, Lip1p: a novel subunit of acyl-CoA ceramide synthase, The EMBO Journal, vol.266, issue.4, pp.730-771, 2005.
DOI : 10.1093/emboj/19.12.2824

URL : https://hal.archives-ouvertes.fr/hal-00088715

K. Venkataraman and A. H. Futerman, Do longevity assurance genes containing Hox domains regulate cell development via ceramide synthesis?, FEBS Letters, vol.89, issue.1-3, pp.1-3, 2002.
DOI : 10.1016/S0014-5793(02)03248-9

W. Wang and X. Yang, An Inositolphosphorylceramide Synthase Is Involved in Regulation of Plant Programmed Cell Death Associated with Defense in Arabidopsis, THE PLANT CELL ONLINE, vol.20, issue.11, pp.3163-79, 2008.
DOI : 10.1105/tpc.108.060053

D. Warnecke and E. Heinz, Recently discovered functions of glucosylceramides in plants and fungi, Cellular and Molecular Life Sciences, vol.60, issue.5, pp.919-960, 2003.
DOI : 10.1007/s00018-003-2243-4

G. West and L. Viitanen, Identification of a glycosphingolipid transfer protein GLTP1 in Arabidopsis???thaliana, FEBS Journal, vol.6, issue.13, pp.3421-3458, 2008.
DOI : 10.1111/j.1742-4658.2008.06498.x

D. Worrall and Y. K. Liang, Involvement of sphingosine kinase in plant cell signalling, The Plant Journal, vol.578, issue.1, pp.64-72, 2008.
DOI : 10.1111/j.1365-313X.2008.03579.x

T. Yamaji and K. Hanada, Sphingolipid Metabolism and Interorganellar Transport: Localization of Sphingolipid Enzymes and Lipid Transfer Proteins, Traffic, vol.279, issue.2, pp.101-123, 2015.
DOI : 10.1111/tra.12239

H. S. Yoo and W. P. Norred, Fumonisin inhibition of de Novo sphingolipid biosynthesis and cytotoxicity are correlated in LLC-PK1 cells, Toxicology and Applied Pharmacology, vol.114, issue.1, pp.9-15, 1992.
DOI : 10.1016/0041-008X(92)90090-F

B. Zanolari and S. Friant, Sphingoid base synthesis requirement for endocytosis in Saccharomyces cerevisiae, The EMBO Journal, vol.19, issue.12, pp.2824-2857, 2000.
DOI : 10.1093/emboj/19.12.2824

URL : https://hal.archives-ouvertes.fr/hal-00153234

H. Zhang and N. N. Desai, Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation, The Journal of Cell Biology, vol.114, issue.1, pp.155-67, 1991.
DOI : 10.1083/jcb.114.1.155

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289065/pdf

Y. Zhang and Y. Wang, Sphingosine Kinase 1 and Cancer: A Systematic Review and Meta-Analysis, PLoS ONE, vol.139, issue.2, p.90362, 2014.
DOI : 10.1371/journal.pone.0090362.s001

H. Zheng and O. Rowland, Disruptions of the Arabidopsis Enoyl-CoA Reductase Gene Reveal an Essential Role for Very-Long-Chain Fatty Acid Synthesis in Cell Expansion during Plant Morphogenesis, THE PLANT CELL ONLINE, vol.17, issue.5, pp.1467-81, 2005.
DOI : 10.1105/tpc.104.030155