H. L. Alakomi, J. Matto, I. Virkajarvi, and M. Saarela, Application of a microplate scale fluorochrome staining assay for the assessment of viability of probiotic preparations, Journal of Microbiological Methods, vol.62, issue.1, pp.25-35, 2005.
DOI : 10.1016/j.mimet.2005.01.005

A. Amaretti, M. Nunzio, A. Pompei, S. Raimondi, M. Rossi et al., Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities, Applied Microbiology and Biotechnology, vol.105, issue.2, pp.809-817, 2013.
DOI : 10.1111/j.1365-2672.2008.03860.x

T. J. Anchordoguy, A. S. Rudolph, J. F. Carpenter, and J. H. Crowe, Modes of interaction of cryoprotectants with membrane phospholipids during freezing, Cryobiology, vol.24, issue.4, pp.324-331, 1987.
DOI : 10.1016/0011-2240(87)90036-8

L. Baati, C. Fabre-gea, D. Auriol, and P. J. Blanc, Study of the cryotolerance of Lactobacillus acidophilus: effect of culture and freezing conditions on the viability and cellular protein levels, International Journal of Food Microbiology, vol.59, issue.3, pp.241-247, 2000.
DOI : 10.1016/S0168-1605(00)00361-5

S. K. Balasubramanian, W. F. Wolkers, and J. C. Bischof, Membrane hydration correlates to cellular biophysics during freezing in mammalian cells, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1788, issue.5, pp.945-953, 2009.
DOI : 10.1016/j.bbamem.2009.02.009

URL : http://doi.org/10.1016/j.bbamem.2009.02.009

G. Basyigit, H. Kuleasan, and A. Karahan, Viability of human-derived probiotic lactobacilli in ice cream produced with sucrose and aspartame, Journal of Industrial Microbiology & Biotechnology, vol.17, issue.9, pp.796-800, 2006.
DOI : 10.1007/s10295-006-0128-x

D. P. Baumann and G. W. Reinbold, Freezing of Lactic Cultures, Journal of Dairy Science, vol.49, issue.3, pp.259-263, 1966.
DOI : 10.3168/jds.S0022-0302(66)87846-3

C. Béal and G. Corrieu, Viability and Acidification Activity of Pure and Mixed Starters of Streptococcus salivarius ssp. thermophilus 404 and Lactobacillus delbrueckii ssp. bulgaricus 398 at the Different Steps of Their Production, LWT - Food Science and Technology, vol.27, issue.1, pp.86-92, 1994.
DOI : 10.1006/fstl.1994.1017

C. Béal, F. Fonseca, and G. Corrieu, Resistance to Freezing and Frozen Storage of Streptococcus thermophilus Is Related to Membrane Fatty Acid Composition, Journal of Dairy Science, vol.84, issue.11, pp.2347-2356, 2001.
DOI : 10.3168/jds.S0022-0302(01)74683-8

L. Beney and P. Gervais, In uence of the uidity of the membrane on the response of microorganisms to environmental stresses, Applied Microbiology and Biotechnology, vol.57, issue.12, pp.34-42, 2001.

D. Berner and H. Viernstein, Effect of protective agents on the viability of Lactococcus lactis subjected to freeze-thawing and freeze-drying, Scientia Pharmaceutica, vol.74, issue.3, pp.137-149, 2006.
DOI : 10.3797/scipharm.2006.74.137

C. Branca, S. Magazu, G. Maisano, and P. Migliardo, Anomalous cryoprotective effectiveness of trehalose: Raman scattering evidences, The Journal of Chemical Physics, vol.329, issue.10, pp.281-287, 1999.
DOI : 10.1021/j100408a027

L. Cao-hoang, F. Dumont, P. A. Marechal, M. Le-thanh, and P. Gervais, Rates of chilling to 0?C: implications for the survival of microorganisms and relationship with membrane fluidity modifications, Applied Microbiology and Biotechnology, vol.67, issue.6, pp.1379-1387, 2008.
DOI : 10.1099/00221287-19-2-380

R. Carcoba and A. Rodriguez, In uence of cryoprotectants on the viability and acidifying activity of frozen and freeze-dried cells of the novel starter strain Lactococcus lactis ssp. lactis CECT 5180, European Food Research and Technology, vol.211, issue.6, pp.433-437, 2000.

A. S. Carvalho, J. Silva, P. Ho, P. Teixeira, F. X. Malcata et al., Relevant factors for the preparation of freeze-dried lactic acid bacteria, International Dairy Journal, vol.14, issue.10, pp.835-847, 2004.
DOI : 10.1016/j.idairyj.2004.02.001

D. Chapman, Phase transitions and fluidity characteristics of lipids and cell membranes, Quarterly Reviews of Biophysics, vol.11, issue.02, pp.185-235, 1975.
DOI : 10.1016/0005-2736(72)90033-8

F. J. Chavarri, M. D. Paz, and M. Nunez, Cryoprotective agents for frozen concentrated starters from non-bitterStreptococcus lactis strains, Biotechnology Letters, vol.19, issue.1, pp.11-16, 1988.
DOI : 10.1007/BF01030016

T. Chen, A. Fowler, and M. Toner, Literature Review, Cryobiology, vol.40, issue.3, pp.277-282, 2000.
DOI : 10.1007/978-3-662-44572-3_2

A. Clarke, G. J. Morris, F. Fonseca, B. J. Murray, E. Acton et al., A Low Temperature Limit for Life on Earth, PLoS ONE, vol.9, issue.5, p.66207, 2013.
DOI : 10.1371/journal.pone.0066207.s005

URL : https://hal.archives-ouvertes.fr/hal-01190603

D. P. Cohen, J. Renes, F. G. Bouwman, E. G. Zoetendal, E. Mariman et al., Proteomic analysis of log to stationary growth phaseLactobacillus plantarum cells and a 2-DE database, PROTEOMICS, vol.95, issue.24, pp.6485-6493, 2006.
DOI : 10.1002/pmic.200600361

R. Coppola, M. Iorizzo, A. Sorrentino, E. Sorrentino, and L. Grazia, Resistenza al congelamento di lattobacilli meso li isolati da insaccati e paste acide, Industrie Alimentari, pp.35-347, 1996.

G. Corrieu, H. E. Spinnler, Y. Jomier, D. Picque, and I. , Automated system to follow up and control the acidi cation activity of lactic acid starters, pp.629-612, 1988.

J. H. Crowe, F. A. Hoekstra, L. M. Crowe, T. J. Anchordoguy, and E. Drobnis, Lipid phase transitions measured in intact cells with fourier transform infrared spectroscopy, Cryobiology, vol.26, issue.1, pp.76-84, 1989.
DOI : 10.1016/0011-2240(89)90035-7

D. Antoni, G. L. , P. Perez, A. Abraham, and M. C. Añon, Trehalose, a cryoprotectant for Lactobacillus bulgaricus, Cryobiology, vol.26, issue.2, pp.149-153, 1989.
DOI : 10.1016/0011-2240(89)90045-X

D. Giulio, B. , P. Orlando, G. Barba, R. Coppola et al., Use of alginate and cryo-protective sugars to improve the viability of lactic acid bacteria after freezing and freeze-drying, World Journal of Microbiology and Biotechnology, vol.37, issue.3, pp.739-746, 2005.
DOI : 10.1016/0304-4157(88)90015-9

Y. Doleyres, I. Fliss, and C. Lacroix, Increased stress tolerance of Bifidobacterium longum and Lactococcus lactis produced during continuous mixed-strain immobilized-cell fermentation, Journal of Applied Microbiology, vol.80, issue.3, pp.527-539, 2004.
DOI : 10.1111/j.1365-2672.1996.tb03242.x

F. Dumont, P. A. Marechal, and P. Gervais, Cell Size and Water Permeability as Determining Factors for Cell Viability after Freezing at Different Cooling Rates, Applied and Environmental Microbiology, vol.70, issue.1, pp.268-272, 2004.
DOI : 10.1128/AEM.70.1.268-272.2004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC321282

B. Ebel, F. Martin, L. D. Le, P. Gervais, and R. Cachon, Use of gases to improve survival of Bifidobacterium bifidum by modifying redox potential in fermented milk, Journal of Dairy Science, vol.94, issue.5, pp.2185-2191, 2011.
DOI : 10.3168/jds.2010-3850

J. Farrant and G. J. Morris, Thermal shock and dilution shock as the causes of freezing injury, Cryobiology, vol.10, issue.2, pp.134-140, 1973.
DOI : 10.1016/0011-2240(73)90019-9

M. L. Fernandez-murga, D. Bernik, G. Font, A. E. Valdez, and . Disalvo, Permeability and Stability Properties of Membranes Formed by Lipids Extracted fromLactobacillus acidophilusGrown at Different Temperatures, Archives of Biochemistry and Biophysics, vol.364, issue.1, pp.115-121, 1999.
DOI : 10.1006/abbi.1998.1093

M. L. Fernandez-murga, G. M. Cabrera, G. Font-de-valdez, A. Disalvo, and A. M. Seldes, Influence of growth temperature on cryotolerance and lipid composition of Lactobacillus acidophilus, Journal of Applied Microbiology, vol.23, issue.2, pp.342-348, 2000.
DOI : 10.1111/j.1365-2672.1995.tb03429.x

M. L. Fernandez-murga, G. Font, E. A. Valdez, and . Disalvo, Effect of Lipid Composition on the Stability of Cellular Membranes during Freeze?Thawing of Lactobacillus acidophilus Grown at Different Temperatures, Archives of Biochemistry and Biophysics, vol.388, issue.2, pp.179-184, 2001.
DOI : 10.1006/abbi.2001.2274

A. C. Florence, Physiological responses of bi dobacteria subjected to acid, cold and gastro-intestinal stress in organic and conventional milks, 2013.

F. Fonseca, C. Béal, and G. Corrieu, Method of quantifying the loss of acidification activity of lactic acid starters during freezing and frozen storage, Journal of Dairy Research, vol.67, issue.1, pp.83-90, 2000.
DOI : 10.1017/S002202999900401X

F. Fonseca, C. Béal, and G. Corrieu, Operating Conditions That Affect the Resistance of Lactic Acid Bacteria to Freezing and Frozen Storage, Cryobiology, vol.43, issue.3, pp.189-198, 2001.
DOI : 10.1006/cryo.2001.2343

F. Fonseca, C. Béal, F. Mihoub, M. Marin, and G. Corrieu, Improvement of cryopreservation of Lactobacillus delbrueckii subsp. bulgaricus CFL1 with additives displaying different protective effects, International Dairy Journal, vol.13, issue.11, pp.917-926, 2003.
DOI : 10.1016/S0958-6946(03)00119-5

F. Fonseca, M. Marin, and G. J. Morris, Stabilization of Frozen Lactobacillus delbrueckii subsp. bulgaricus in Glycerol Suspensions: Freezing Kinetics and Storage Temperature Effects, Applied and Environmental Microbiology, vol.72, issue.10, pp.6474-6482, 2006.
DOI : 10.1128/AEM.00998-06

F. Fonseca, J. P. Obert, C. Béal, and M. Marin, State diagrams and sorption isotherms of bacterial suspensions and fermented medium, Thermochimica Acta, vol.366, issue.2, pp.167-182, 2001.
DOI : 10.1016/S0040-6031(00)00725-5

F. Fonseca, S. Passot, P. Lieben, and M. Marin, Collapse temperature of bacterial suspensions: the effect of cell type and concentration, Cryo-Letters, vol.25, issue.6, pp.425-434, 2004.

G. Font-de-valdez, G. Savoy-de-giori, A. Pesce-de-ruiz-holgado, and G. Oliver, Comparative study of the efficiency of some additives in protecting lactic acid bacteria against freeze-drying, Cryobiology, vol.20, issue.5, pp.560-566, 1983.
DOI : 10.1016/0011-2240(83)90044-5

R. Foschino, E. Fiori, and A. Galli, Survival and residual activity of Lactobacillus acidophilus frozen cultures under different conditions, Journal of Dairy Research, vol.54, issue.02, pp.295-303, 1996.
DOI : 10.1016/0011-2240(77)90175-4

F. Franks, Freeze-drying of bioproducts: putting principles into practice, European Journal of Pharmaceutics and Biopharmaceutics, vol.45, issue.3, pp.221-229, 1998.
DOI : 10.1016/S0939-6411(98)00004-6

H. Y. Gao, Z. K. Yang, L. T. Wu, D. K. Thompson, and J. Zhou, Global Transcriptome Analysis of the Cold Shock Response of Shewanella oneidensis MR-1 and Mutational Analysis of Its Classical Cold Shock Proteins, Journal of Bacteriology, vol.188, issue.12, pp.4560-4569, 2006.
DOI : 10.1128/JB.01908-05

M. Garnier, S. Matamoros, D. Chevret, M. F. Pilet, F. Leroi et al., Adaptation to Cold and Proteomic Responses of the Psychrotrophic Biopreservative Lactococcus piscium Strain CNCM I-4031, Applied and Environmental Microbiology, vol.76, issue.24, pp.8011-8018, 2010.
DOI : 10.1128/AEM.01331-10

J. Gautier, S. Passot, C. Penicaud, H. Guillemin, S. Cenard et al., A low membrane lipid phase transition temperature is associated with a high cryotolerance of Lactobacillus delbrueckii subspecies bulgaricus CFL1, Journal of Dairy Science, vol.96, issue.9, pp.5591-5602, 2013.
DOI : 10.3168/jds.2013-6802

URL : https://hal.archives-ouvertes.fr/hal-01001061

S. E. Gilliland and R. C. Lara, In uence of storage at freezing and subsequent refrigeration temperatures on b-galactosidase activity of Lactobacillus acidophilus, Applied and Environmental Microbiology, vol.54, issue.4, pp.898-902, 1988.

G. Godward, K. Sultana, K. Kailasapathy, P. Peiris, R. Arumugaswamy et al., The importance of strain selection on the viability and survival of probiotic bacteria in dairy foods, Milchwissenschaft, vol.55, issue.8, pp.441-445, 2000.

Z. Hubalek, Cryopreservation of microorganisms at ultra-low temperatures. Pragues: Academia, 1996.

Z. Hubalek, Protectants used in the cryopreservation of microorganisms, Cryobiology, vol.46, issue.3, pp.205-229, 2003.
DOI : 10.1016/S0011-2240(03)00046-4

M. A. Hussain, M. I. Knight, and M. L. Britz, during stationary growth phase, Journal of Applied Microbiology, vol.61, issue.3, pp.764-773, 2009.
DOI : 10.1111/j.1365-2672.2008.03961.x

J. Jakubowska, Z. Libudzisz, and A. Piatkiewicz, Evaluation of lactic acid Streptococci for the preparation of frozen concentrated starter cultures, Acta Microbiologica Polonica, vol.29, issue.2, pp.135-144, 1980.

E. Johannsen, during Freezing and Thawing, Journal of Applied Bacteriology, vol.8, issue.3, pp.415-421, 1972.
DOI : 10.1111/j.1749-6632.1960.tb49979.x

J. Tomás, M. S. , V. S. Ocaña, and M. E. Nader-macías, Viability of vaginal probiotic lactobacilli during refrigerated and frozen storage, Anaerobe, vol.10, issue.1, pp.1-5, 2004.
DOI : 10.1016/j.anaerobe.2004.01.002

P. Kankaanpää, H. Yang, E. Kallio, S. Isolauri, and . Salminen, Effects of Polyunsaturated Fatty Acids in Growth Medium on Lipid Composition and on Physicochemical Surface Properties of Lactobacilli, Applied and Environmental Microbiology, vol.70, issue.1, pp.129-136, 2004.
DOI : 10.1128/AEM.70.1.129-136.2004

J. O. Karlsson, E. G. Cravalho, and M. Toner, Intracellular ice formation: causes and consequences, Cryo-Letters, vol.14, pp.323-334, 1993.

J. O. Karlsson and M. Toner, Long-term storage of tissues by cryopreservation: critical issues, Biomaterials, vol.17, issue.3, pp.243-256, 1996.
DOI : 10.1016/0142-9612(96)85562-1

T. R. Klaenhammer and E. G. Kleeman, Growth characteristics, bile sensitivity, and freeze damage in colonial variants of Lactobacillus acidophilus, Applied and Environnmental Microbiology, vol.41, issue.6, pp.1461-1467, 1981.

C. Lacroix and S. Yildirim, Fermentation technologies for the production of probiotics with high viability and functionality, Current Opinion in Biotechnology, vol.18, issue.2, pp.176-183, 2007.
DOI : 10.1016/j.copbio.2007.02.002

M. S. Leloux, The Influence of Macromolecules on the Freezing of Water, Journal of Macromolecular Science, Part C: Polymer Reviews, vol.253, issue.1, pp.1-16, 1999.
DOI : 10.1016/0040-6031(94)02087-5

H. Levine and L. Slade, Principles of " cryostabilization " technology from structure/property relationships of carbohydrate/water systems?A review, Cryo-Letters, vol.9, pp.21-63, 1988.

G. L. Lorca, G. Font, and . Valdez, A Low-pH-Inducible, Stationary-Phase Acid Tolerance Response in Lactobacillus acidophilus CRL 639, Current Microbiology, vol.42, issue.1, pp.21-25, 2001.
DOI : 10.1007/s002840010172

A. M. Madureira, M. Amorim, A. M. Gomes, M. Pintado, and F. X. Malcata, Protective effect of whey cheese matrix on probiotic strains exposed to simulated gastrointestinal conditions, Food Research International, vol.44, issue.1, pp.465-470, 2011.
DOI : 10.1016/j.foodres.2010.09.010

I. Mainville, Y. Arcand, and E. R. Farnworth, A dynamic model that simulates the human upper gastrointestinal tract for the study of probiotics, International Journal of Food Microbiology, vol.99, issue.3, pp.287-296, 2005.
DOI : 10.1016/j.ijfoodmicro.2004.08.020

P. Marteau, M. Minekus, R. Havenaar, and J. H. , Survival of Lactic Acid Bacteria in a Dynamic Model of the Stomach and Small Intestine: Validation and the Effects of Bile, Journal of Dairy Science, vol.80, issue.6, pp.1031-1037, 1997.
DOI : 10.3168/jds.S0022-0302(97)76027-2

J. E. Maus and S. C. Ingham, Employment of stressful conditions during culture production to enhance subsequent cold- and acid-tolerance of bifidobacteria, Journal of Applied Microbiology, vol.65, issue.1, pp.146-153, 2003.
DOI : 10.12938/bifidus1982.2.1_17

P. Mazur, Causes of injury in frozen and thawed cells, Federation Proceedings, vol.24, pp.175-182, 1965.

P. Mazur, Cryobiology: The Freezing of Biological Systems, Science, vol.168, issue.3934, pp.939-949, 1970.
DOI : 10.1126/science.168.3934.939

P. Mazur, The role of intracellular freezing in the death of cells cooled at supraoptimal rates, Cryobiology, vol.14, issue.3, pp.251-272, 1977.
DOI : 10.1016/0011-2240(77)90175-4

P. Mazur, Freezing of living cells: Mechanisms and implications, American Journal of Physiology, vol.16, pp.125-142, 1984.

P. Mazur, Equilibrium, quasi-equilibrium, and nonequilibrium freezing of mammalian embryos, Cell Biophysics, vol.21, issue.1, pp.53-92, 1990.
DOI : 10.1007/BF02989804

D. R. Mcfarlane, Devitrification in glass-forming aqueous solutions, Cryobiology, vol.23, issue.3, pp.230-244, 1986.
DOI : 10.1016/0011-2240(86)90049-0

D. R. Mcfarlane, Physical aspects of vitrification in aqueous solutions, Cryobiology, vol.24, issue.3, pp.181-195, 1987.
DOI : 10.1016/0011-2240(87)90022-8

L. E. Mcgann, Differing actions of penetrating and nonpenetrating cryoprotective agents, Cryobiology, vol.15, issue.4, pp.382-390, 1978.
DOI : 10.1016/0011-2240(78)90056-1

L. E. Mcgann and J. Farrant, Survival of tissue culture cells frozen by a two-step procedure to ?196 ?C. I. Holding temperature and time, Cryobiology, vol.13, issue.3, pp.261-268, 1976.
DOI : 10.1016/0011-2240(76)90106-1

M. Modesto, P. Mattarelli, and B. Biavati, Resistance to freezing and freeze-drying storage processes of potential probiotic bi dobacteria, Annals of Microbiology, vol.54, issue.1, pp.43-48, 2004.

M. Morice, P. Bracquart, and G. Linden, Colonial Variation and Freeze-Thaw Resistance of Streptococcus thermophilus, Journal of Dairy Science, vol.75, issue.5, pp.1197-1203, 1992.
DOI : 10.3168/jds.S0022-0302(92)77867-9

G. I. Novik, N. I. Astapovitch, N. G. Kadnikova, and N. E. Ryabaya, Retention of the viability and physiological properties of bi dobacteria during storage by cryopreservation and lyophilisation, Microbiology, vol.67, issue.5, pp.525-529, 1998.

H. Oldenhof, W. F. Wolkers, F. Fonseca, S. Passot, and M. Marin, Effect of Sucrose and Maltodextrin on the Physical Properties and Survival of Air-Dried Lactobacillus bulgaricus: An in Situ Fourier Transform Infrared Spectroscopy Study, Biotechnology Progress, vol.35, issue.3, pp.885-892, 2005.
DOI : 10.1016/S0304-4165(98)00059-2

A. Persson, A. S. Jonsson, and G. Zacchi, Separation of lactic acid-producing bacteria from fermentation broth using a ceramic microfiltration membrane with constant permeate flow, Biotechnology and Bioengineering, vol.152, issue.3, pp.269-277, 2001.
DOI : 10.1016/0011-9164(90)85027-8

DOI : 10.1556/AAlim.30.2001.1.10

A. Piatkiewicz and K. Mokrosinska, Effect of thawing rate on survival and activity of lactic acid bacteria, Polish Journal of Food and Nutrition Sciences, vol.4, issue.2, pp.33-46, 1995.

V. Ragoonanan, A. Hubel, and A. Aksan, Response of the cell membrane?cytoskeleton complex to osmotic and freeze/thaw stresses, Cryobiology, vol.61, issue.3, pp.335-344, 2010.
DOI : 10.1016/j.cryobiol.2010.10.160

V. Ragoonanan, T. Wiedmann, and A. Aksan, Characterization of the Effect of NaCl and Trehalose on the Thermotropic Hysteresis of DOPC Lipids during Freeze/Thaw, The Journal of Physical Chemistry B, vol.114, issue.50, pp.16752-16758, 2010.
DOI : 10.1021/jp103960r

A. Rault, Incidence de l'état physiologique des lactobacilles d'intérêt laitier sur leur cryotolérance, 2009.

A. Rault, C. Béal, S. Ghorbal, J. C. Ogier, and M. Bouix, Multiparametric flow cytometry allows rapid assessment and comparison of lactic acid bacteria viability after freezing and during frozen storage, Cryobiology, vol.55, issue.1, pp.35-43, 2007.
DOI : 10.1016/j.cryobiol.2007.04.005

A. Rault, M. Bouix, and C. Béal, Cryotolerance of Lactobacillus delbrueckii subsp. bulgaricus CFL1 is influenced by the physiological state during fermentation, International Dairy Journal, vol.20, issue.11, pp.792-799, 2010.
DOI : 10.1016/j.idairyj.2010.05.002

URL : https://hal.archives-ouvertes.fr/hal-01195462

E. Redon, P. Loubiere, and M. Cocaign-bousquet, Transcriptome Analysis of the Progressive Adaptation of Lactococcus lactis to Carbon Starvation, Journal of Bacteriology, vol.187, issue.10, pp.3589-3592, 2005.
DOI : 10.1128/JB.187.10.3589-3592.2005

A. S. Rudolph and J. H. Crowe, Membrane stabilization during freezing: The role of two natural cryoprotectants, trehalose and proline, Cryobiology, vol.22, issue.4, pp.367-377, 1985.
DOI : 10.1016/0011-2240(85)90184-1

M. Saarela, I. Virkajärki, H. L. Alakomi, T. Mattila-sandholm, A. Vaari et al., Influence of fermentation time, cryoprotectant and neutralization of cell concentrate on freeze-drying survival, storage stability, and acid and bile exposure of Bifidobacterium animalis ssp. lactis cells produced without milk-based ingredients, Journal of Applied Microbiology, vol.29, issue.6, pp.1330-1339, 2005.
DOI : 10.1016/S0032-9592(03)00222-X

S. Savoie, C. P. Champagne, S. Chiasson, and O. Audet, Media and process parameters affecting the growth, strain ratios and specific acidifying activities of a mixed lactic starter containing aroma-producing and probiotic strains, Journal of Applied Microbiology, vol.67, issue.1, pp.163-174, 2007.
DOI : 10.1006/fstl.2001.0799

G. G. Shurda, In uence of profound oxidation [freezing] on certain properties of lactic acid bacteria, Applied Biochemistry and Microbiology, vol.16, issue.1, pp.11-16, 1980.

J. A. Searles, J. F. Carpenter, and T. W. Randolph, The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature???controlled shelf, Journal of Pharmaceutical Sciences, vol.90, issue.7, pp.860-871, 2001.
DOI : 10.1002/jps.1039

N. P. Shah, Probiotic Bacteria: Selective Enumeration and Survival in Dairy Foods, Journal of Dairy Science, vol.83, issue.4, pp.894-907, 2000.
DOI : 10.3168/jds.S0022-0302(00)74953-8

R. B. Smittle, S. E. Gilliland, and M. L. Speck, Death of Lactobacillus bulgaricus resulting from liquid nitrogen freezing, Applied Microbiology, vol.24, issue.4, pp.551-554, 1972.

I. V. Stamatova, Probiotic activity of Lactobacillus delbrueckii subsp. bulgaricus in the oral cavity. An in vitro study, 2010.

F. Streit, In uence des conditions de récolte et de concentration sur l'état physiologique et la cryotolérance de Lactobacillus delbrueckii subsp. bulgaricus CFL1, 2008.

F. Streit, V. Athes, A. Bchir, G. Corrieu, and C. Béal, Microfiltration conditions modify Lactobacillus bulgaricus cryotolerance in response to physiological changes, Bioprocess and Biosystems Engineering, vol.105, issue.2, pp.197-204, 2011.
DOI : 10.1111/j.1365-2672.2008.03848.x

URL : https://hal.archives-ouvertes.fr/hal-01001450

F. Streit, G. Corrieu, and C. Béal, Acidification improves cryotolerance of Lactobacillus delbrueckii subsp. bulgaricus CFL1, Journal of Biotechnology, vol.128, issue.3, pp.659-667, 2007.
DOI : 10.1016/j.jbiotec.2006.11.012

F. Streit, G. Corrieu, and C. Béal, Effect of Centrifugation Conditions on the Cryotolerance of Lactobacillus bulgaricus CFL1, Food and Bioprocess Technology, vol.50, issue.3, pp.36-42, 2010.
DOI : 10.1016/j.idairyj.2004.02.001

F. Streit, J. Delettre, G. Corrieu, and C. Béal, Acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus induces physiological responses at membrane and cytosolic levels that improves cryotolerance, Journal of Applied Microbiology, vol.105, issue.4, pp.1771-1780, 2008.

M. Succi, P. Tremonte, A. Reale, E. Sorrentino, and R. Coppola, Preservation by freezing of potentially probiotic strains ofLactobacillus rhamnosus, Annals of Microbiology, vol.57, issue.3, pp.537-544, 2007.
DOI : 10.1007/BF03175352

I. Sumeri, L. Arike, J. Stekolstsikova, R. Uusna, S. Adamberg et al., Effect of stress pretreatment on survival of probiotic bacteria in gastrointestinal tract simulator, Applied Microbiology and Biotechnology, vol.138, issue.6, pp.1925-1931, 2010.
DOI : 10.1099/00221287-138-10-2125

M. Suutari and S. Laakso, Temperature adaptation in Lactobacillus fermentum: interconversions of oleic, vaccenic and dihydrosterulic acids, Journal of General Microbiology, vol.138, issue.3, pp.445-450, 1992.
DOI : 10.1099/00221287-138-3-445

M. P. Taranto, M. L. Fernandez-murga, G. Lorca, G. Font, and . Valdez, Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri, Journal of Applied Microbiology, vol.80, issue.1, pp.86-91, 2003.
DOI : 10.1046/j.1365-2672.2001.01450.x

R. K. Thunell, W. E. Sandine, and F. W. Bodyfelt, Frozen Starters from Internal-pH-Control-Grown Cultures, Journal of Dairy Science, vol.67, issue.1, pp.24-36, 1984.
DOI : 10.3168/jds.S0022-0302(84)81262-X

B. C. To and M. R. , Spray Drying, Freeze Drying, or Freezing of Three Different Lactic Acid Bacteria Species, Journal of Food Science, vol.72, issue.16, pp.576-578, 1997.
DOI : 10.1016/0168-6445(93)90066-I

T. Tsvetkov and I. Shishkova, Studies on the effects of low temperatures on lactic acid bacteria, Cryobiology, vol.19, issue.2, pp.211-214, 1982.
DOI : 10.1016/0011-2240(82)90143-2

E. E. Tymczyszyn, M. Del-rosario-díaz, A. Gómez-zavaglia, and E. A. Disalvo, Volume recovery, surface properties and membrane integrity of Lactobacillus delbrueckii subsp. bulgaricus dehydrated in the presence of trehalose or sucrose, Journal of Applied Microbiology, vol.64, issue.6, pp.2410-2419, 2007.
DOI : 10.1111/j.1365-2672.1960.tb00188.x

T. Vasiljevic and N. P. Shah, Probiotics?From Metchnikoff to bioactives, International Dairy Journal, vol.18, issue.7, pp.714-728, 2008.
DOI : 10.1016/j.idairyj.2008.03.004

M. Volkert, E. Ananta, C. Luscher, and D. Knorr, Effect of air freezing, spray freezing, and pressure shift freezing on membrane integrity and viability of Lactobacillus rhamnosus GG, Journal of Food Engineering, vol.87, issue.4, pp.532-540, 2008.
DOI : 10.1016/j.jfoodeng.2008.01.008

Y. Wang, Preadaptation and cryotolerance in Lactobacillus acidophilus: Effect of operating conditions, 2005.

Y. Wang, G. Corrieu, and C. Béal, Fermentation pH and Temperature Influence the Cryotolerance of Lactobacillus acidophilus RD758, Journal of Dairy Science, vol.88, issue.1, pp.21-29, 2005.
DOI : 10.3168/jds.S0022-0302(05)72658-8

Y. Wang, J. Delettre, G. Corrieu, and C. Béal, Starvation induces physiological changes that act on the cryotolerance of Lactobacillus acidophilus RD758, Biotechnology Progress, vol.152, issue.2, pp.342-350, 2011.
DOI : 10.1016/j.resmic.2009.04.006

URL : https://hal.archives-ouvertes.fr/hal-01001017

Y. Wang, J. Delettre, A. Guillot, G. Corrieu, and C. Béal, Influence of cooling temperature and duration on cold adaptation of Lactobacillus acidophilus RD758, Cryobiology, vol.50, issue.3, pp.294-307, 2005.
DOI : 10.1016/j.cryobiol.2005.03.001

J. Wolfe and G. Bryant, Freezing, Drying, and/or Vitrification of Membrane? Solute?Water Systems, Cryobiology, vol.39, issue.2, pp.103-129, 1999.
DOI : 10.1006/cryo.1999.2195

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. T. Wright and T. R. Klaenhammer, Calcium-induced alteration of cellular morphology affecting the resistance of Lactobacillus acidophilus to freezing, Applied and Environmental Microbiology, vol.41, issue.3, pp.807-815, 1981.

C. Wu, J. Zhang, M. Wang, C. Du, and J. Chen, Lactobacillus casei combats acid stress by maintaining cell membrane functionality, Journal of Industrial Microbiology & Biotechnology, vol.83, issue.7, pp.1031-1039, 2012.
DOI : 10.1007/s00253-009-2034-4

M. F. Zacarías, A. Binetti, M. Laco, J. Reinheimer, and G. Vinderola, Preliminary technological and potential probiotic characterisation of bifidobacteria isolated from breast milk for use in dairy products, International Dairy Journal, vol.21, issue.8, pp.548-555, 2011.
DOI : 10.1016/j.idairyj.2011.03.007

J. Zhang, G. C. Du, Y. P. Zhang, X. Y. Liao, M. Wang et al., Glutathione Protects Lactobacillus sanfranciscensis against Freeze-Thawing, Freeze-Drying, and Cold Treatment, Applied and Environmental Microbiology, vol.76, issue.9, pp.2989-2996, 2010.
DOI : 10.1128/AEM.00026-09

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2863433