G. Svensater, B. Sjogreen, and I. Hamilton, Multiple stress responses in Streptococcus mutans and the induction of general and stress-specific proteins, Microbiology, vol.146, issue.1, pp.107-117, 2000.
DOI : 10.1099/00221287-146-1-107

G. Lorca, F. De-valdez, and G. , A Low-pH-Inducible, Stationary-Phase Acid Tolerance Response in Lactobacillus acidophilus CRL 639, Current Microbiology, vol.42, issue.1, pp.21-25, 2001.
DOI : 10.1007/s002840010172

G. Giliberti, G. Naclerio, L. Martirani, R. E. , D. Felice et al., Alteration of cell morphology and viability in a recA mutant of Streptococcus thermophilus upon induction of heat shock and nutrient starvation, Gene, vol.295, issue.1, pp.1-6, 2002.
DOI : 10.1016/S0378-1119(02)00830-2

D. Cohen, J. Renes, F. Bouwman, E. Zoetendal, E. Mariman et al., Proteomic analysis of log to stationary growth phaseLactobacillus plantarum cells and a 2-DE database, PROTEOMICS, vol.95, issue.24, pp.6485-6493, 2006.
DOI : 10.1002/pmic.200600361

C. Béal, F. Fonseca, and G. Corrieu, Resistance to Freezing and Frozen Storage of Streptococcus thermophilus Is Related to Membrane Fatty Acid Composition, Journal of Dairy Science, vol.84, issue.11, pp.2347-2356, 2001.
DOI : 10.3168/jds.S0022-0302(01)74683-8

Y. Wang, G. Corrieu, and C. Béal, Fermentation pH and Temperature Influence the Cryotolerance of Lactobacillus acidophilus RD758, Journal of Dairy Science, vol.88, issue.1, pp.21-29, 2005.
DOI : 10.3168/jds.S0022-0302(05)72658-8

A. Hartke, S. Bouche, X. Gansel, P. Boutibonnes, and Y. Auffray, Starvation-induced stress resistance in Lactococcus lactis subsp. lactis IL 1403, Appl Environ Microbiol, vol.60, pp.3474-3478, 1994.

J. Giard, A. Hartke, S. Flahaut, A. Benachour, P. Boutibonnes et al., Starvation-Induced Multiresistance in Enterococcus faecalis JH2-2, Current Microbiology, vol.32, issue.5, pp.264-271, 1996.
DOI : 10.1007/s002849900048

C. Chervaux, S. Ehrlich, and E. Maguin, Physiological Study of Lactobacillus delbrueckii subsp. bulgaricus Strains in a Novel Chemically Defined Medium, Applied and Environmental Microbiology, vol.66, issue.12, pp.5306-5311, 2000.
DOI : 10.1128/AEM.66.12.5306-5311.2000

V. Trainor, R. Udy, P. Bremer, and G. Cook, under stress and starvation, FEMS Microbiology Letters, vol.176, issue.2, pp.421-428, 1999.
DOI : 10.1111/j.1574-6968.1999.tb13692.x

K. Wetzel, M. Menzel, and K. Heller, Stress response in Lactococcus lactis and Streptococcus thermophilus induced by carbon starva- tion. Kieler Milchwirtschaftliche Forschungsberichte, pp.319-332, 1999.

W. Kim, J. Park, J. Ren, P. Su, and N. Dunn, Survival Response and Rearrangement of Plasmid DNA of Lactococcus lactis during Long-Term Starvation, Applied and Environmental Microbiology, vol.67, issue.10, pp.4594-4602, 2001.
DOI : 10.1128/AEM.67.10.4594-4602.2001

O. Kuipers, P. De-ruyter, M. Kleerebezem, and W. De-vos, Quorum sensing-controlled gene expression in lactic acid bacteria, Journal of Biotechnology, vol.64, issue.1, pp.15-21, 1998.
DOI : 10.1016/S0168-1656(98)00100-X

J. Maus and S. Ingham, Employment of stressful conditions during culture production to enhance subsequent cold- and acid-tolerance of bifidobacteria, Journal of Applied Microbiology, vol.65, issue.1, pp.146-153, 2003.
DOI : 10.12938/bifidus1982.2.1_17

A. Carvalho, J. Silva, P. Ho, P. Teixeira, F. Malcata et al., Effects of Addition of Sucrose and Salt, and of Starvation upon Thermotolerance and Survival During Storage of Freeze-dried Lactobacillus delbrueckii ssp bulgaricus, Journal of Food Science, vol.18, issue.8, pp.2538-2541, 2003.
DOI : 10.1006/cryo.1997.2021

M. Saarela, M. Rantala, K. Hallamaa, L. Nohynek, I. Virkajärvi et al., Stationary-phase acid and heat treatments for improvement of the viability of probiotic lactobacilli and bifidobacteria, Journal of Applied Microbiology, vol.31, issue.6, pp.1205-1214, 2004.
DOI : 10.1128/AEM.69.1.220-226.2003

P. Gawande and M. Griffiths, and Subsequent Cryotolerance in Escherichia coli O157:H7, Journal of Food Protection, vol.68, issue.6, pp.1154-1158, 2005.
DOI : 10.4315/0362-028X-68.6.1154

B. Leenanon and M. Drake, Acid Stress, Starvation, and Cold Stress Affect Poststress Behavior of Escherichia coli O157:H7 and Nonpathogenic Escherichia coli, Journal of Food Protection, vol.64, issue.7, pp.970-974, 2001.
DOI : 10.4315/0362-028X-64.7.970

F. Fonseca, C. Béal, and G. Corrieu, Method of quantifying the loss of acidification activity of lactic acid starters during freezing and frozen storage, Journal of Dairy Research, vol.67, issue.1, pp.83-90, 2000.
DOI : 10.1017/S002202999900401X

M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-254, 1976.
DOI : 10.1016/0003-2697(76)90527-3

A. Guillot, C. Gitton, P. Anglade, and M. Mistou, Proteomic analysis of Lactococcus lactis, a lactic acid bacterium, PROTEOMICS, vol.3, issue.3, pp.337-354, 2003.
DOI : 10.1002/pmic.200390047

B. Poolman, E. Smid, H. Veldkamp, and W. Konings, Bioenergetic consequences of lactose starvation for continuously cultured Streptococcus cremoris., Journal of Bacteriology, vol.169, issue.4, pp.1460-1468, 1987.
DOI : 10.1128/jb.169.4.1460-1468.1987

N. Russell, Psychrophilic bacteria?Molecular adaptations of membrane lipids, Comparative Biochemistry and Physiology Part A: Physiology, vol.118, issue.3, pp.489-493, 1997.
DOI : 10.1016/S0300-9629(97)87354-9

T. Kaneda, Iso-and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance, Microbiol, vol.55, pp.288-302, 1991.

A. Guillot, D. Obis, and M. Mistou, Fatty acid membrane composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress, International Journal of Food Microbiology, vol.55, issue.1-3, pp.47-51, 2000.
DOI : 10.1016/S0168-1605(00)00193-8

A. Gomez-zavaglia, E. Disalvo, D. Antoni, and G. , Fatty acid composition and freeze?thaw resistance in lactobacilli, Journal of Dairy Research, vol.67, issue.2, pp.241-247, 2000.
DOI : 10.1017/S0022029900004179

M. Suutari and S. Laakso, Temperature adaptation in Lactobacillus fermentum: interconversions of oleic, vaccenic and dihydrosterulic acids, Journal of General Microbiology, vol.138, issue.3, pp.445-450, 1992.
DOI : 10.1099/00221287-138-3-445

D. Nichols, J. Olley, H. Garda, R. Brenner, and T. Mcmeekin, Effect of Temperature and Salinity Stress on Growth and Lipid Composition of Shewanella gelidimarina, Applied and Environmental Microbiology, vol.66, issue.6, pp.2422-2429, 2000.
DOI : 10.1128/AEM.66.6.2422-2429.2000

B. Annous, L. Becker, D. Bayles, D. Labeda, and B. Wilkinson, Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures, Appl Environ Microbiol, vol.63, pp.3887-3894, 1997.

D. Frees, F. Vogensen, and H. Ingmer, Identification of proteins induced at low pH in Lactococcus lactis, International Journal of Food Microbiology, vol.87, issue.3, pp.1-8, 2003.
DOI : 10.1016/S0168-1605(03)00104-1

P. Bron, M. Marco, S. Hoffer, E. Van-mullekom, W. De-vos et al., Genetic Characterization of the Bile Salt Response in Lactobacillus plantarum and Analysis of Responsive Promoters In Vitro and In Situ in the Gastrointestinal Tract, Journal of Bacteriology, vol.186, issue.23, pp.7829-7835, 2004.
DOI : 10.1128/JB.186.23.7829-7835.2004

U. Stochaj, R. Rassadi, and J. Chiu, Stress-mediated inhibition of the classical nuclear protein import pathway and nuclear accumulation of the small GTPase Gsp1p, The FASEB Journal, vol.14, pp.2130-2132, 2000.
DOI : 10.1096/fj.99-0751fje

G. Da-silveira, M. Baumgartner, M. Rombouts, F. Abee, and T. , Effect of Adaptation to Ethanol on Cytoplasmic and Membrane Protein Profiles of Oenococcus oeni, Applied and Environmental Microbiology, vol.70, issue.5, pp.2748-2755, 2004.
DOI : 10.1128/AEM.70.5.2748-2755.2004

A. Jofré, M. Champomier-vergès, P. Anglade, F. Baraige, B. Martin et al., Protein synthesis in lactic acid and pathogenic bacteria during recovery from a high pressure treatment, Research in Microbiology, vol.158, issue.6, pp.512-520, 2007.
DOI : 10.1016/j.resmic.2007.05.005

J. Wilkins, K. Homer, and D. Beighton, Analysis of Streptococcus mutans Proteins Modulated by Culture under Acidic Conditions, Applied and Environmental Microbiology, vol.68, issue.5
DOI : 10.1128/AEM.68.5.2382-2390.2002

A. Budin-verneuil, V. Pichereau, Y. Auffray, . Ehrlich, S. Dusko et al., Proteomic characterization of the acid tolerance response inLactococcus lactis MG1363, PROTEOMICS, vol.26, issue.18, pp.4794-4807, 2005.
DOI : 10.1099/00221287-146-6-1447

B. Sanchez, M. Champomier-vergès, P. Anglade, F. Baraige, C. De-los-reyes-gavilan et al., Proteomic Analysis of Global Changes in Protein Expression during Bile Salt Exposure of Bifidobacterium longum NCIMB 8809, Journal of Bacteriology, vol.187, issue.16, pp.5799-5808, 2005.
DOI : 10.1128/JB.187.16.5799-5808.2005

M. Blaghen, D. Vidon, E. Kebbaj, and M. , 138A14, Canadian Journal of Microbiology, vol.39, issue.2, pp.193-200, 1993.
DOI : 10.1139/m93-027

A. Bolotin, P. Wincker, S. Mauger, O. Jaillon, K. Malarme et al., The Complete Genome Sequence of the Lactic Acid Bacterium Lactococcus lactis ssp. lactis IL1403, Genome Research, vol.11, issue.5, pp.731-753, 2001.
DOI : 10.1101/gr.GR-1697R

J. Palmfeldt, F. Levander, B. Hahn-hägerdal, and P. James, metabolizing maltose, PROTEOMICS, vol.153, issue.12, pp.3881-3898, 2004.
DOI : 10.1007/BF00341447

K. Han, J. Song, K. Ahn, J. Park, H. Seo et al., protein, Tsf, FEMS Microbiology Letters, vol.274, issue.1, pp.132-138, 2007.
DOI : 10.1111/j.1574-6968.2007.00824.x

H. Karring, A. Bjornsson, S. Thirup, B. Clark, and C. Knudsen, elongation factor Ts, European Journal of Biochemistry, vol.14, issue.21, pp.4294-4305, 2003.
DOI : 10.1016/0263-7855(96)00009-4

P. Vatanaviboon, T. Varaluksit, C. Seeanukun, and S. Mongkolsuk, Transaldolase exhibits a protective role against menadione toxicity in Xanthomonas campestris pv. phaseoli, Biochemical and Biophysical Research Communications, vol.297, issue.4, pp.968-973, 2002.
DOI : 10.1016/S0006-291X(02)02329-X

B. Corcoran, C. Stanton, G. Fitzgerald, and R. Ross, Life Under Stress: The Probiotic Stress Response and How it may be Manipulated, Current Pharmaceutical Design, vol.14, issue.14, pp.1382-1399, 2008.
DOI : 10.2174/138161208784480225

URL : http://doi.org/10.2174/138161208784480225

J. Park, C. Grant, M. Davies, and I. Dawes, Is Required for Resistance to Freeze-Thaw Stress, Journal of Biological Chemistry, vol.14, issue.36, pp.22921-22928, 1998.
DOI : 10.1128/MCB.14.11.7037

J. Prasad, M. Jarrow, P. Gopal, and P. , Heat and Osmotic Stress Responses of Probiotic Lactobacillus rhamnosus HN001 (DR20) in Relation to Viability after Drying, Applied and Environmental Microbiology, vol.69, issue.2, pp.917-925, 2003.
DOI : 10.1128/AEM.69.2.917-925.2003

M. Willemoes, M. Kilstrup, P. Roepstorff, and K. Hammer, Proteome analysis of a Lactococcus lactis strain overexpressing gapA suggests that the gene product is an auxiliary glyceraldehyde 3-phosphate dehydrogenase, PROTEOMICS, vol.2, issue.8, pp.1041-1046, 2002.
DOI : 10.1002/1615-9861(200208)2:8<1041::AID-PROT1041>3.0.CO;2-7

N. Beyer, P. Roepstorff, K. Hammer, and M. Kilstrup, Proteome analysis of the purine stimulon from Lactococcus lactis, PROTEOMICS, vol.3, issue.5, pp.786-797, 2003.
DOI : 10.1002/pmic.200300416

D. Cagno, R. , D. Angelis, M. Coda, R. Minervini et al., Molecular adaptation of sourdough Lactobacillus plantarum DC400 under co-cultivation with other lactobacilli, Research in Microbiology, vol.160, issue.5, pp.358-366, 2009.
DOI : 10.1016/j.resmic.2009.04.006

E. Farrish, H. Baker, R. Wolf, and . Jr, Different control circuits for growth rate-dependent regulation of 6-phosphogluconate dehydrogenase and protein components of the translational machinery in Escherichia coli, J Bacteriol, vol.152, pp.584-594, 1982.