B. A. Annous, M. F. Kozempel, and M. J. Kurantz, Changes in membrane fatty acid composition of Pediococcus sp strain NRRL B-2354 in response to growth conditions and its effect on thermal resistance, Appl Environ Microbiol, vol.65, pp.2857-2862, 1999.

B. Eal, C. Marin, M. Fonseca, F. Corrieu, and G. , Proc ed e de pr eparation d'une composition lyophilis ee contenant des bact eries lactiques a viabilit e et activit e bact eriennes am elior ees lors d'un stockage a temp erature ambiante et composition obtenue, 2001.

B. Eal, C. Fonseca, F. Corrieu, and G. , Resistance to freezing and frozen storage of Streptococcus thermophilus is related to membrane fatty acid composition, J Dairy Sci, vol.84, pp.2347-2356, 2001.

L. Beney, Y. Mille, and P. Gervais, Death of Escherichia coli during rapid and severe dehydration is related to lipid phase transition, Applied Microbiology and Biotechnology, vol.1237, issue.4, pp.457-464, 2004.
DOI : 10.1007/s00253-002-1167-5

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-254, 1976.
DOI : 10.1016/0003-2697(76)90527-3

J. R. Broadbent and C. Lin, Effect of Heat Shock or Cold Shock Treatment on the Resistance of Lactococcus lactis to Freezing and Lyophilization, Cryobiology, vol.39, issue.1, pp.88-102, 1999.
DOI : 10.1006/cryo.1999.2190

L. Cao-hoang, F. Dumont, P. A. Marechal, M. Le-thanh, and P. Gervais, Rates of chilling to 0?C: implications for the survival of microorganisms and relationship with membrane fluidity modifications, Applied Microbiology and Biotechnology, vol.67, issue.6, pp.1379-1387, 2008.
DOI : 10.1099/00221287-19-2-380

A. S. Carvalho, J. Silva, P. Ho, P. Teixeira, F. X. Malcata et al., Relevant factors for the preparation of freeze-dried lactic acid bacteria, International Dairy Journal, vol.14, issue.10, pp.835-847, 2004.
DOI : 10.1016/j.idairyj.2004.02.001

C. P. Champagne, Y. Raymond, and J. P. Simon, Effect of water activity and protective solutes on growth and subsequent survival to air-drying of Lactobacillus and Bifidobacterium cultures, Applied Microbiology and Biotechnology, vol.15, issue.708???710, pp.745-756, 2012.
DOI : 10.1006/fmic.1997.0140

I. Coulibaly, R. Dubois-dauphin, J. Destain, M. L. Fauconnier, G. Lognay et al., The Resistance to Freeze-Drying and to Storage Was Determined as the Cellular Ability to Recover Its Survival Rate and Acidification Activity, International Journal of Microbiology, vol.22, issue.5, 2010.
DOI : 10.1111/j.1472-765X.1996.tb01172.x

D. Angelis, M. Gobbetti, and M. , Environmental stress responses inLactobacillus: A review, PROTEOMICS, vol.4, issue.1, pp.106-122, 2004.
DOI : 10.1002/pmic.200300497

F. Fonseca, C. Corrieu, and G. , Method of quantifying the loss of acidification activity of lactic acid starters during freezing and frozen storage, Journal of Dairy Research, vol.67, issue.1, pp.83-90, 2000.
DOI : 10.1017/S002202999900401X

A. Guillot, D. Obis, and M. Y. Mistou, Fatty acid membrane composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress, International Journal of Food Microbiology, vol.55, issue.1-3, pp.47-51, 2000.
DOI : 10.1016/S0168-1605(00)00193-8

W. Hu, R. J. Schmidt, E. E. Mcdonell, C. M. Klingerman, and L. Kung, The effect of Lactobacillus buchneri 40788 or Lactobacillus plantarum MTD-1 on the fermentation and aerobic stability of corn silages ensiled at two dry matter contents, Journal of Dairy Science, vol.92, issue.8, pp.3907-3914, 2009.
DOI : 10.3168/jds.2008-1788

S. Koch, G. Oberson, E. Eugster-meier, L. Melle, and C. Lacroix, Osmotic stress induced by salt increases cell yield, autolytic activity, and survival of lyophilization of Lactobacillus delbrueckii subsp. lactis, International Journal of Food Microbiology, vol.117, issue.1, pp.36-42, 2007.
DOI : 10.1016/j.ijfoodmicro.2007.01.016

J. R. Lakowicz, Principles of Frequency-Domain Fluorescence Spectroscopy and Applications to Cell Membranes, Subcell Biochem, vol.13, pp.89-126, 1988.
DOI : 10.1007/978-1-4613-9359-7_3

C. Laroche, L. Beney, P. A. Marechal, and P. Gervais, The effect of osmotic pressure on the membrane fluidity of Saccharomyces cerevisiae at different physiological temperatures, Applied Microbiology and Biotechnology, vol.56, issue.1-2, pp.249-254, 2001.
DOI : 10.1007/s002530000583

L. J. Linders, G. Meerdink, and K. Vantriet, Effect of growth parameters on the residual activity of Lactobacillus plantarum after drying, Journal of Applied Microbiology, vol.82, issue.6, pp.683-688, 1997.
DOI : 10.1046/j.1365-2672.1997.00183.x

N. Loffhagen, C. Hartig, W. Geyer, M. Voyevoda, and H. Harms, Competition betweencis, trans and Cyclopropane Fatty Acid Formation and its Impact on Membrane Fluidity, Engineering in Life Sciences, vol.72, issue.1, pp.67-74, 2007.
DOI : 10.1111/j.1365-2672.1996.tb04489.x

C. S. Lopez, H. Heras, H. Garda, S. Ruzal, C. Sanchez-rivas et al., Biochemical and biophysical studies of Bacillus subtilis envelopes under hyperosmotic stress, International Journal of Food Microbiology, vol.55, issue.1-3, pp.137-142, 2000.
DOI : 10.1016/S0168-1605(00)00171-9

M. Monteolivasanchez, A. Ramoscormenzana, and N. J. Russell, The effect of salinity and compatible solutes on the biosynthesis of cyclopropane fatty acids in Pseudomonas halosaccharolytica, Journal of General Microbiology, vol.139, issue.8, pp.1877-1884, 1993.
DOI : 10.1099/00221287-139-8-1877

N. C. Mykytczuk, J. T. Trevors, L. G. Leduc, and G. D. Ferroni, Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress, Progress in Biophysics and Molecular Biology, vol.95, issue.1-3, pp.60-82, 2007.
DOI : 10.1016/j.pbiomolbio.2007.05.001

D. Obis, A. Guillot, J. C. Gripon, P. Renault, A. Bolotin et al., Genetic and biochemical characterization of a high-affinity betaine uptake system (BusA) in Lactococcus lactis reveals a new functional organization within bacterial ABC transporters, J Bacteriol, vol.181, pp.6238-6246, 1999.

D. Obis, A. Guillot, and M. Y. Mistou, is related to the activity of a betaine transport system, FEMS Microbiology Letters, vol.202, issue.1, pp.39-44, 2001.
DOI : 10.1111/j.1574-6968.2001.tb10777.x

O. 'callaghan, J. Condon, and S. , Growth of Lactococcus lactis strains at low water activity: correlation with the ability to accumulate glycine betaine, International Journal of Food Microbiology, vol.55, issue.1-3, pp.127-131, 2000.
DOI : 10.1016/S0168-1605(00)00168-9

J. Prasad, P. Mcjarrow, and P. Gopal, Heat and Osmotic Stress Responses of Probiotic Lactobacillus rhamnosus HN001 (DR20) in Relation to Viability after Drying, Applied and Environmental Microbiology, vol.69, issue.2, pp.917-925, 2003.
DOI : 10.1128/AEM.69.2.917-925.2003

L. J. Reich and L. M. Kung, Effects of combining Lactobacillus buchneri 40788 with various lactic acid bacteria on the fermentation and aerobic stability of corn silage, Animal Feed Science and Technology, vol.159, issue.3-4, pp.105-109, 2010.
DOI : 10.1016/j.anifeedsci.2010.06.002

Y. Romeo, J. Bouvier, and C. Gutierrez, La r??ponse au stress osmotique des bact??ries lactiques Lactococcus lactis et Lactobacillus plantarum (mini-revue), Le Lait, vol.81, issue.1-2, pp.49-55, 2001.
DOI : 10.1051/lait:2001100

M. H. Saarela, H. L. Alakomi, A. Puhakka, and J. Matto, analyses of cell physiological functions to predict it, Journal of Applied Microbiology, vol.98, issue.4, pp.1204-1212, 2009.
DOI : 10.1111/j.1365-2672.2008.04089.x

A. Schoug, J. Fischer, H. J. Heipieper, J. Schnuerer, and S. Hakansson, Impact of fermentation pH and temperature on freeze-drying survival and membrane lipid composition of Lactobacillus coryniformis Si3, Journal of Industrial Microbiology & Biotechnology, vol.99, issue.3, pp.175-181, 2008.
DOI : 10.1201/9780824752033

A. Schoug-bergenholtz, P. Wessman, A. Wuttke, and S. Hakansson, A case study on stress preconditioning of a Lactobacillus strain prior to freeze-drying, Cryobiology, vol.64, issue.3, pp.152-159, 2012.
DOI : 10.1016/j.cryobiol.2012.01.002

E. E. Tymczyszyn, A. Gomez-zavaglia, and E. A. Disalvo, Influence of the growth at high osmolality on the lipid composition, water permeability and osmotic response of Lactobacillus bulgaricus, Archives of Biochemistry and Biophysics, vol.443, issue.1-2, pp.66-73, 2005.
DOI : 10.1016/j.abb.2005.09.004

T. Van-der-heide and B. Poolman, Osmoregulated ABC-transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane, Proceedings of the National Academy of Sciences, vol.275, issue.2, pp.7102-7106, 2000.
DOI : 10.1074/jbc.275.2.735

Y. Wang, G. Corrieu, and C. , Fermentation pH and Temperature Influence the Cryotolerance of Lactobacillus acidophilus RD758, Journal of Dairy Science, vol.88, issue.1, pp.21-29, 2005.
DOI : 10.3168/jds.S0022-0302(05)72658-8

L. M. Zamora, C. Carretero, and D. Pares, Comparative Survival Rates of Lactic Acid Bacteria Isolated from Blood, Following Spray-drying and Freeze-drying, Food Science and Technology International, vol.12, issue.1, pp.77-84, 2006.
DOI : 10.1177/1082013206062443