F. Abe, S. Tomita, T. Yaeshima, and K. Iwatsuki, in yogurt, Letters in Applied Microbiology, vol.16, issue.6, pp.715-720, 2009.
DOI : 10.12938/bifidus1996.16.73

P. Aureli, L. Capurso, A. M. Castellazzi, M. Clerici, M. Giovannini et al., Probiotics and health: An evidence-based review, Pharmacological Research, vol.63, issue.5, pp.366-376, 2011.
DOI : 10.1016/j.phrs.2011.02.006

URL : https://air.unimi.it/bitstream/2434/160162/2/revisione%20probiotici%20zuccotti%202011.pdf

B. Eal, C. Fonseca, F. Corrieu, and G. , Resistance to freezing and frozen storage of Streptococcus thermophilus is related to membrane fatty acid composition, Journal of Dairy Science, vol.84, pp.2347-2356, 2001.

P. Bergamo, E. Fedeli, L. Iannibelli, and G. Marzillo, Fat-soluble vitamin contents and fatty acid composition in organic and conventional Italian dairy products, Food Chemistry, vol.82, issue.4, pp.625-631, 2003.
DOI : 10.1016/S0308-8146(03)00036-0

M. P. Bolduc, Y. Raymond, P. Fustier, C. P. Champagne, and J. C. Vuillemard, Sensitivity of bifidobacteria to oxygen and redox potential in non-fermented pasteurized milk, International Dairy Journal, vol.16, issue.9, 2006.
DOI : 10.1016/j.idairyj.2005.10.030

G. Butler, S. Stergiadis, C. Seal, M. Eyre, and C. Leifert, Fat composition of organic and conventional retail milk in northeast England, Journal of Dairy Science, vol.94, issue.1, pp.24-36, 2011.
DOI : 10.3168/jds.2010-3331

R. Cachon, S. Jeanson, M. Aldarf, and C. Divies, Characterisation of lactic starters based on acidification and reduction activities, Le Lait, vol.82, issue.3, pp.281-288, 2002.
DOI : 10.1051/lait:2002010

S. H. Chung, I. H. Kim, H. G. Park, H. S. Kang, C. S. Yoon et al., Synthesis of Conjugated Linoleic Acid by Human-Derived Bifidobacterium breve LMC 017: Utilization as a Functional Starter Culture for Milk Fermentation, Journal of Agricultural and Food Chemistry, vol.56, issue.9, pp.3311-3316, 2008.
DOI : 10.1021/jf0730789

M. Coackley, R. P. Ross, M. Nordgren, G. Fitzgerald, R. Devery et al., Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species, Journal of Applied Microbiology, vol.7, issue.1, pp.138-145, 2003.
DOI : 10.1023/A:1002041616085

B. M. Corcoran, C. Stanton, G. F. Fitzgerald, and R. P. Ross, Growth of probiotic lactobacilli in the presence of oleic acid enhances subsequent survival in gastric juice, Microbiology, vol.153, issue.1, pp.291-299, 2007.
DOI : 10.1099/mic.0.28966-0

P. D. Cotter and C. Hill, Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH, Microbiology and Molecular Biology Reviews, vol.67, issue.3, pp.429-453, 2003.
DOI : 10.1128/MMBR.67.3.429-453.2003

DOI : 10.1111/j.1365-2621.2004.00820.x

F. Destaillats, J. P. Trottier, J. M. Galvez, and P. Angers, Analysis of ?-Linolenic Acid Biohydrogenation Intermediates in Milk Fat with Emphasis on Conjugated Linolenic Acids, Journal of Dairy Science, vol.88, issue.9, pp.3231-3239, 2005.
DOI : 10.3168/jds.S0022-0302(05)73006-X

O. N. Donkor, A. Henriksson, T. Vasiljevic, and N. P. Shah, Effect of acidification on the activity of probiotics in yoghurt during cold storage, International Dairy Journal, vol.16, issue.10, pp.1181-1189, 2006.
DOI : 10.1016/j.idairyj.2005.10.008

B. Ebel, F. Martin, L. D. Le, P. Gervais, and R. Cachon, Use of gases to improve survival of Bifidobacterium bifidum by modifying redox potential in fermented milk, Journal of Dairy Science, vol.94, issue.5, pp.2185-2191, 2011.
DOI : 10.3168/jds.2010-3850

A. P. Espirito-santo, N. S. Cartolano, T. F. Silva, A. S. Soares, L. A. Gioielli et al., Fibers from fruit by-products enhance probiotic viability and fatty acid profile and increase CLA content in yoghurts, International Journal of Food Microbiology, vol.154, issue.3, pp.135-144, 2012.
DOI : 10.1016/j.ijfoodmicro.2011.12.025

A. C. Florence, C. Silva, R. C. Bogsan, C. S. Pilleggi, A. L. Gioielli et al., Fatty acid profile, trans-octadecenoic, ?-linolenic and conjugated linoleic acid contents differing in certified organic and conventional probiotic fermented milks, Food Chemistry, vol.135, issue.4, pp.2207-2214, 2012.
DOI : 10.1016/j.foodchem.2012.07.026

URL : https://hal.archives-ouvertes.fr/hal-01004102

A. C. Florence, C. Silva, R. C. Oliveira, and M. N. , Survival of three Bifidobacterium animalis subsp. lactis strains is related to trans-vaccenic and alinolenic acids contents in organic fermented milks, pp.290-295, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01195470

A. C. Florence, R. C. Da-silva, A. P. Espirito-santo, L. A. Gioielli, A. Y. Tamime et al., Increased CLA content in organic milk fermented by bifidobacteria or yoghurt cultures, Dairy Science and Technology, vol.23, issue.6, pp.541-553, 2009.
DOI : 10.1590/S1516-93322007000400014

URL : https://hal.archives-ouvertes.fr/hal-00895715

A. C. Florence, R. P. Oliveira, R. C. Silva, F. A. Soares, L. A. Gioielli et al., Organic milk improves Bifidobacterium lactis counts and bioactive fatty acids contents in fermented milk, LWT - Food Science and Technology, vol.49, issue.1, pp.89-95, 2012.
DOI : 10.1016/j.lwt.2012.04.023

L. Gorissen, D. Vuyst, L. Raes, K. , D. Smet et al., Conjugated linoleic and linolenic acid production kinetics by bifidobacteria differ among strains, International Journal of Food Microbiology, vol.155, issue.3, pp.234-240, 2012.
DOI : 10.1016/j.ijfoodmicro.2012.02.012

V. S. Jayamanne and M. R. Adams, Determination of survival, identity and stress resistance of probiotic bifidobacteria in bio-yoghurts, Letters in Applied Microbiology, vol.115, issue.3, pp.189-194, 2006.
DOI : 10.1128/AEM.69.12.7517-7522.2003

V. S. Jayamanne and M. R. Adams, ) on the survival of bifidobacteria in fermented milk, International Journal of Food Science & Technology, vol.109, issue.6, 2009.
DOI : 10.12938/bifidus1982.12.1_39

J. Jin, B. Zhang, H. Guo, J. Cui, L. Jiang et al., Mechanism Analysis of Acid Tolerance Response of Bifidobacterium longum subsp. longum BBMN 68 by Gene Expression Profile Using RNA-Sequencing, PLoS ONE, vol.165, issue.12, p.50777, 2012.
DOI : 10.1371/journal.pone.0050777.s003

S. Louesdon, S. Charlot-roug-e, R. Tourdot-mar-echal, M. Bouix, and C. , ?R0175, Microbial Biotechnology, vol.6, issue.2, pp.311-318, 2015.
DOI : 10.1111/1751-7915.12132

URL : http://doi.org/10.1111/1751-7915.12132

T. Mattila-sandholm, P. Myllarinen, R. Crittenden, G. Mogensen, R. Fonden et al., Technological challenges for future probiotic foods, International Dairy Journal, vol.12, issue.2-3, pp.173-182, 2002.
DOI : 10.1016/S0958-6946(01)00099-1

C. Montanari, S. L. Kamdema, D. I. Serrazanetti, F. Etoa, and M. E. Guerzoni, Synthesis of cyclopropane fatty acids in Lactobacillus helveticus and Lactobacillus sanfranciscensis and their cellular fatty acids changes following short term acid and cold stresses, Food Microbiology, vol.27, issue.4, pp.493-502, 2010.
DOI : 10.1016/j.fm.2009.12.003

A. M. Mortazavian, M. R. Ehsani, S. M. Mousavi, K. Rezaei, S. Sohrabvandi et al., Effect of refrigerated storage temperature on the viability of probiotic micro-organisms in yogurt, International Journal of Dairy Technology, vol.55, issue.2, pp.123-127, 2007.
DOI : 10.1016/S0963-9969(00)00011-9

J. A. Muller, R. P. Ross, W. F. Sybesma, G. F. Fitzgerald, and C. Stanton, Modification of the Technical Properties of Lactobacillus johnsonii NCC 533 by Supplementing the Growth Medium with Unsaturated Fatty Acids, Applied and Environmental Microbiology, vol.77, issue.19, pp.6889-6898, 2011.
DOI : 10.1128/AEM.05213-11

P. T. Nguyen, Y. K. Lee, and W. Zhou, Effect of high intensity ultrasound on carbohydrate metabolism of bifidobacteria in milk fermentation, Food Chemistry, vol.130, issue.4, pp.866-874, 2012.
DOI : 10.1016/j.foodchem.2011.07.108

T. S. Oberg, R. E. Ward, J. L. Steele, and . Broadbent, Genetic and Physiological Responses of Bifidobacterium animalis subsp. lactis to Hydrogen Peroxide Stress, Journal of Bacteriology, vol.195, issue.16, pp.3743-3751, 2013.
DOI : 10.1128/JB.00279-13

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3754573

R. P. Oliveira, P. Perego, A. Converti, and M. N. Oliveira, Growth and acidification performance of probiotics in pure culture and co-culture with Streptococcus thermophilus: the effect of inulin, 2009.

R. P. Oliveira, P. Perego, M. N. Oliveira, and A. Converti, Growth, organic acids profile and sugar metabolism of Bifidobacterium lactis in co-culture with Streptococcus thermophilus: The inulin effect, Food Research International, vol.48, issue.1, pp.21-27, 2012.
DOI : 10.1016/j.foodres.2012.02.012

M. P. Ongol, Y. Sawatari, Y. Ebina, T. Sone, M. Tanaka et al., Yoghurt fermented by Lactobacillus delbrueckii subsp. bulgaricus H+-ATPase-defective mutants exhibits enhanced viability of Bifidobacterium breve during storage, International Journal of Food Microbiology, vol.116, issue.3, pp.358-366, 2007.
DOI : 10.1016/j.ijfoodmicro.2007.02.019

H. M. Østlie, M. H. Helland, and J. A. Narvhus, Growth and metabolism of selected strains of probiotic bacteria in milk, International Journal of Food Microbiology, vol.87, issue.1-2, pp.17-27, 2003.
DOI : 10.1016/S0168-1605(03)00044-8

B. Perret and G. Corrieu, Software iCINAC Caract erisation des levains, 2010.

A. Prandini, S. Sigolo, and G. Piva, Conjugated linoleic acid (CLA) and fatty acid composition of milk, curd and Grana Padano cheese in conventional and organic farming systems, Journal of Dairy Research, vol.130, issue.03, pp.278-282, 2009.
DOI : 10.1016/j.anifeedsci.2004.08.003

A. Prandini, S. Sigolo, G. Tansini, N. Brogna, and G. Piva, Different level of conjugated linoleic acid (CLA) in dairy products from Italy, Journal of Food Composition and Analysis, vol.20, issue.6, pp.472-479, 2007.
DOI : 10.1016/j.jfca.2007.03.001

P. H. Prasanna, A. S. Grandison, and D. Charalampopoulos, Screening human intestinal Bifidobacterium strains for growth, acidification, EPS production and viscosity potential in low-fat milk, International Dairy Journal, vol.23, issue.1, pp.36-44, 2012.
DOI : 10.1016/j.idairyj.2011.09.008

A. Rault, C. Ghorbal, S. Ogier, J. Bouix, and M. , Multiparametric flow cytometry allows rapid assessment and comparison of lactic acid bacteria viability after freezing and during frozen storage, Cryobiology, vol.55, issue.1, pp.55-90, 2007.
DOI : 10.1016/j.cryobiol.2007.04.005

S. Reimann, F. Grattepanche, R. Benz, V. Mozzetti, E. Rezzonico et al., Improved tolerance to bile salts of aggregated Bifidobacterium longum produced during continuous culture with immobilized cells, Bioresource Technology, vol.102, issue.6, pp.4559-4567, 2011.
DOI : 10.1016/j.biortech.2010.12.058

L. Ruiz, P. Ruas-madiedo, M. Gueimonde, C. G. De-los-reyes-gavil-an, A. Margolles et al., How do bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences, Genes & Nutrition, vol.191, issue.3, pp.307-318, 2011.
DOI : 10.1128/JB.00897-09

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145062

L. Ruiz, B. Ruas-madiedo, P. De-los-reyes-gavil-an, C. G. Margolles, and A. , Cell envelope changes in Bifidobacterium animalis ssp. lactis as a response to bile, FEMS Microbiology Letters, vol.247, pp.316-322, 2007.

N. J. Russel, Bacterial membranes: the effects of chill storage and food processing. An overview, International Journal of Food Microbiology, vol.79, issue.1-2, pp.79-106, 2002.
DOI : 10.1016/S0168-1605(02)00176-9

N. Salazar, A. Prieto, J. A. Leal, B. Mayo, J. C. Bada-gancedo et al., Production of exopolysaccharides by Lactobacillus and Bifidobacterium strains of human origin, and metabolic activity of the producing bacteria in milk, Journal of Dairy Science, vol.92, issue.9, pp.4158-4168, 2009.
DOI : 10.3168/jds.2009-2126

S. Anchez, B. Champomier, M. Collado, M. D. Anglade, P. Baraige et al., Low-pH Adaptation and the Acid Tolerance Response of Bifidobacterium longum Biotype longum, Applied and Environmental Microbiology, vol.73, issue.20, pp.6450-6459, 2007.
DOI : 10.1128/AEM.00886-07

K. A. Stevens and L. A. Jaykus, Direct detection of bacterial pathogens in representative dairy products using a combined bacterial concentration-PCR approach, Journal of Applied Microbiology, vol.63, issue.6, pp.1115-1122, 2004.
DOI : 10.1111/j.1365-2672.1991.tb04437.x

F. Streit, J. Delettre, G. Corrieu, and C. , Acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus induces physiological responses at membrane and cytosolic levels that improves cryotolerance, Journal of Applied Microbiology, vol.105, 2008.

R. Tudisco, M. I. Cutrignelli, S. Calabro, G. Piccolo, F. Bovera et al., Influence of organic systems on milk fatty acid profile and CLA in goats, Small Ruminant Research, vol.88, issue.2-3, pp.151-155, 2010.
DOI : 10.1016/j.smallrumres.2009.12.023

G. Vinderola, A. Binetti, B. Burns, and J. Reinheimer, Cell Viability and Functionality of Probiotic Bacteria in Dairy Products, Frontiers in Microbiology, vol.2, issue.2, 2011.
DOI : 10.3389/fmicb.2011.00070

C. G. Vinderola, M. Gueimonde, T. Delgado, J. A. Reinheimer, and C. G. De-los-reyes-gavil-an, Characteristics of carbonated fermented milk and survival of probiotic bacteria, International Dairy Journal, vol.10, issue.3, pp.213-220, 2000.
DOI : 10.1016/S0958-6946(00)00031-5

L. Waddington, T. Cyr, M. Hefford, L. T. Hansen, and M. Kalmokoff, Understanding the acid tolerance response of bifidobacteria, Journal of Applied Microbiology, vol.19, issue.4, 2010.
DOI : 10.1128/jb.176.5.1422-1426.1994

Y. Wang, G. Corrieu, and C. , Fermentation pH and Temperature Influence the Cryotolerance of Lactobacillus acidophilus RD758, Journal of Dairy Science, vol.88, issue.1, pp.21-29, 2005.
DOI : 10.3168/jds.S0022-0302(05)72658-8

Y. Wang, J. Delettre, G. Corrieu, and C. , Starvation induces physiological changes that act on the cryotolerance of Lactobacillus acidophilus RD758, Biotechnology Progress, vol.152, issue.2, pp.342-350, 2011.
DOI : 10.1016/j.resmic.2009.04.006

URL : https://hal.archives-ouvertes.fr/hal-01001017