R. Agrawal and R. Srikant, Fast algorithms for mining association rules 667 in large databases, Proceedings of the 20th International Conference on, p.668, 1994.

, Very Large Data Bases VLDB '94, p.669

R. Agrawal and R. Srikant, Mining sequential patterns, Proceedings 671 of the Eleventh International Conference on Data Engineering ICDE '95, pp.672-675, 1995.

N. Béchet, P. Cellier, T. Charnois, and B. Crémilleux, Discovering 674 linguistic patterns using sequence mining, Proceedings of the 13th Interna-675 tional Conference on Computational Linguistics and Intelligent Text Process-676 ing -Volume Part I CICLing'12, p.677, 2012.

. Verlag,

S. L. Berrahou, P. Buche, J. Dibie, and M. Roche, Xart system: dis-679 covering and extracting correlated arguments of n-ary relations from text, 680 Proceedings of the 6th International Conference on Web Intelligence, Mining 681 and Semantics, vol.8, pp.1-8, 2016.

J. Björne, J. Heimonen, F. Ginter, A. Airola, T. Pahikkala et al., Extracting complex biological events with rich graph-based feature 684 sets, Proceedings of the Workshop on Current Trends in Biomedical Natural 685 par une ressource termino-ontologique. Revue d'Intelligence Artificielle, vol.27, pp.690-539, 2009.

P. Buche, J. Dibie-barthélemy, L. Ibanescu, and L. Soler, Fuzzy Web 692, 2013.

, Data Tables Integration Guided by an Ontological and Terminological Re-693 source, IEEE Trans. Knowl. Data Eng, vol.25, pp.805-819

Q. Bui and P. M. Sloot, Extracting biological events from text 695 using simple syntactic patterns, Proceedings of the BioNLP Shared Task 696 2011 Workshop BioNLP Shared Task '11, pp.143-146, 2011.

E. Buyko, E. Faessler, J. Wermter, and U. Hahn, Event extraction from 699 trimmed dependency graphs, Proceedings of the Workshop on Current 700 Trends in Biomedical Natural Language Processing: Shared Task BioNLP '09, vol.701, pp.19-27, 2009.

P. Cellier, T. Charnois, M. Plantevit, C. Rigotti, B. Crémilleux et al., , p.704

O. Kléma, J. Manguin, and J. , Sequential pattern mining for, 2015.

, ing gene interactions and their contextual information from biomedical texts

, J. Biomedical Semantics, vol.6, p.27

F. J. Damerau, A technique for computer detection and correction of 708 spelling errors, Commun. ACM, vol.7, pp.171-176, 1964.

L. Di-jorio, S. Bringay, C. Fiot, A. Laurent, and M. Teisseire, Se-710 quential patterns for maintaining ontologies over time, On the Move to, p.711, 2008.

D. Coopis, I. S. Gada, and O. , OTM 2008 Confederated Interna-712 tional Conferences, 2008.

M. Rey, Proceedings, Part II, pp.1385-1403, 2008.

G. Gkoutos, Units ontology, 2011.

T. R. Gruber and G. Olsen, An ontology for engineering mathemat-717 ics, Principles of Knowledge 718 Representation and Reasoning: Proceedings of the 4th International Confer-719 ence (KR '94), pp.258-269, 1994.

V. Guillard, P. Buche, S. Destercke, N. Tamani, M. Croitoru et al., , vol.723

C. Guillaume and N. Gontard, A Decision Support System to design 724 modified atmosphere packaging for fresh produce based on a bipolar flexible 725 querying approach, CEA, pp.131-139, 2015.

Y. Hao, X. Zhu, M. Huang, and M. Li, Discovering patterns to extract 727 proteinprotein interactions from the literature: part ii, Bioinformatics, vol.21, p.32943300, 2005.

L. Hawizy, D. Jessop, N. Adams, and P. Murray-rust, ChemicalTagger: 730 a tool for semantic text-mining in chemistry, Journal of cheminformatics, vol.3, p.17, 2011.

D. Hiemstra, A probabilistic justification for using tf x idf term weighting 733 in information retrieval, Int. J. on Digital Libraries, vol.3, pp.131-139, 2000.

R. Hodgson, J. Paul, H. Jack, and S. Jack, Qudt-quantities, units, 735 dimensions and data types ontologies, 2013.

M. Huang, X. Zhu, D. G. Payan, K. Qu, and M. Li, Discovering patterns Biomedicine and Its Applications JNLPBA '04, pp.22-28, 2004.

S. Jaillet, A. Laurent, and M. Teisseire, Sequential patterns for text 742 categorization, Intell. Data Anal, vol.10, pp.199-214, 2006.

D. M. Jessop, S. E. Adams, and P. Murray-rust, Mining chemical 744 information from open patents, Journal of cheminformatics, vol.3, p.40, 2011.

D. M. Jessop, S. E. Adams, E. L. Willighagen, L. Hawizy, and . Murray-rust, OSCAR4: a flexible architecture for chemical text-mining, Journal 747 of cheminformatics, vol.3, pp.1-12, 2011.

G. H. John and P. Langley, Estimating continuous distributions in 749 bayesian classifiers, Proc. of the conf. on Uncertainty in artificial intel-750 ligence, pp.338-345, 1995.

K. S. Jones, S. Walker, and S. E. Robertson, A probabilistic model 752 of information retrieval: development and comparative experiments, 2000.

, Inf. Process. Manage, vol.36, pp.779-808

G. H. Kohavi and R. John, The wrapper approach, 1998.

, Feature Extraction, Construction and Selection: A Data 756

, Mining Perspective, pp.33-50

R. Kohavi and J. R. Quinlan, Data mining tasks and methods: Classi-758 fication: decision-tree discovery, Handbook of data mining and knowledge 759 discovery, pp.267-276, 2002.

L. Minh, Q. Truong, S. N. Bao, and Q. H. , A pattern approach for 761 biomedical event annotation, Proceedings of the BioNLP Shared Task, 2011.

, Workshop BioNLP Shared Task '11, p.763

J. A. Lossio-ventura, C. Jonquet, M. Roche, and M. Teisseire, Biomedi-765 cal term extraction: overview and a new methodology, Information Retrieval, vol.766, pp.59-99, 2016.

A. Maedche and S. Staab, Measuring similarity between ontologies, 2002.

, Knowledge Engineering and Knowledge Management: Ontologies and the 769 Semantic Web, pp.251-263

A. Minard, A. Ligozat, and B. Grau, Multi-class svm for relation 771 extraction from clinical reports, p.772, 2011.

, RANLP 2011 Organising Com-773 mittee, pp.604-609

M. Miwa, R. Saetre, Y. Miyao, and J. Tsujii, A rich feature vector for 775 protein-protein interaction extraction from multiple corpora, Proceedings of 776 the 2009 Conference on Empirical Methods in Natural Language Processing, vol.777, p.778, 2009.

J. Pei, J. Han, B. Mortazavi-asl, H. Pinto, Q. Chen et al., Prefixspan: Mining sequential patterns by prefix-projected growth, p.780, 2001.

, Proceedings of the 17th International Conference on Data Engineering, pp.782-215

J. C. Platt, Fast training of support vector machines using sequential 784 minimal optimization, Advances in kernel methods, pp.185-208, 1999.

D. Proux, F. Rechenmann, and L. Julliard, A pragmatic information 787 extraction strategy for gathering data on genetic interactions, p.788, 2000.

M. Gribskov, R. B. Altman, N. Jensen, D. A. Hope, T. Lengauer et al.,

E. D. Mitchell, C. Scheeff, S. Smith, and . Strande, , vol.790, pp.279-285

C. Z. Qiu and J. Tang, A novel text 792 classification approach based on enhanced association rule, 2007.

Z. O. Alhajj and R. Gao, Advanced Data Mining and Applica-794 tions: Third International Conference, vol.796, pp.252-263, 2007.

K. Raja, S. Subramani, and J. Natarajan, Ppinterfinder -a mining tool 798 for extracting causal relations on human proteins from literature, Database, vol.799, p.2013, 2013.

H. Rijgersberg, M. Van-assem, and J. L. Top, Ontology of units of 801 measure and related concepts, Semantic Web, vol.4, pp.3-13, 2013.

B. Rosario and M. A. Hearst, Multi-way relation classification: Ap-803 plication to protein-protein interactions, Proceedings of the Conference 804 on Human Language Technology and Empirical Methods in Natural Language 805, 2005.

, Processing HLT '05, pp.732-739

G. Schadow, C. J. Mcdonald, J. G. Suico, U. Föhring, and T. Tolxdorff, , 1999.

, Model formulation: Units of measure in clinical information systems, JAMIA, vol.809, issue.6, pp.151-162

J. Su, H. Zhang, C. X. Ling, and S. Matwin, Discriminative parameter 811 learning for bayesian networks, Proc. of the int. conf. on Machine learning, vol.812, pp.1016-1023, 2008.

R. Touhami, P. Buche, J. Dibie-barthélemy, and L. Ibanescu, An On-814 tological and Terminological Resource for n-ary Relation Annotation in Web 815, 2011.

, Data Tables, ODBASE Conferences, pp.662-679

S. Van-landeghem, Y. Saeys, B. De-baets, and Y. Van-de-peer, Analyz-817 ing text in search of bio-molecular events: A high-precision machine learning 818 framework, Proceedings of the Workshop on Current Trends in Biomed-819, 2009.

, ical Natural Language Processing: Shared Task BioNLP '09, pp.128-136

P. A. Stroudsburg and . Usa,

X. Yan, J. Han, and R. Afshar, Clospan: Mining closed sequential 822 patterns in large databases, SDM . 823 SIAM, 2003.

M. J. Zaki, Spade: An efficient algorithm for mining frequent sequences, 2001.

, Mach. Learn, vol.42, pp.31-60

H. Zhang, M. Huang, and X. Zhu, Protein-protein interaction extraction 827 from bio-literature with compact features and data sampling strategy, 4th 828 International Conference on Biomedical Engineering and Informatics, vol.829, pp.1767-1771, 2011.

D. Zhou, D. Zhong, and Y. He, Event trigger identification for biomedical 831 events extraction using domain knowledge, Bioinformatics, vol.30, pp.1587-1594, 2014.