A statistical test for ripley's K function rejection of poisson null hypothesis

Abstract : Ripley’s K function is the classical tool to characterize the spatial structure of point patterns. It is widely used in vegetation studies. Testing its values against a null hypothesis usually relies on Monte-Carlo simulations since little is known about its distribution. We introduce a statistical test against complete spatial randomness (CSR). The test returns the p-value to reject the null hypothesis of independence between point locations. It is more rigorous and faster than classical Monte-Carlo simulations. We show how to apply it to a tropical forest plot. The necessary R code is provided.
Type de document :
Article dans une revue
International Scholarly Research Network, ISRN Ecology, 2013, 2013 (Article ID753475), 9 p. 〈10.1155/2013/753475〉
Liste complète des métadonnées

https://hal-agroparistech.archives-ouvertes.fr/hal-01502637
Contributeur : Carole Legrand <>
Soumis le : mardi 26 septembre 2017 - 20:03:00
Dernière modification le : mercredi 10 octobre 2018 - 14:28:15
Document(s) archivé(s) le : mercredi 27 décembre 2017 - 15:11:03

Fichier

2013_Marcon_Hindawi Publishing...
Accord explicite pour ce dépôt

Identifiants

Collections

Citation

Eric Marcon, Stephane Traissac, Gabriel Lang. A statistical test for ripley's K function rejection of poisson null hypothesis. International Scholarly Research Network, ISRN Ecology, 2013, 2013 (Article ID753475), 9 p. 〈10.1155/2013/753475〉. 〈hal-01502637〉

Partager

Métriques

Consultations de la notice

236

Téléchargements de fichiers

181