C. G. Zou, R. Banerjee, and . Homocysteine, Antioxid. Redox Signal, vol.7, pp.547-559, 2005.

J. D. Finkelstein, Inborn errors of sulfur-containing amino acid metabolism, J. Nutr, vol.136, pp.1750-1754, 2006.

T. Chiku, H 2 S biogenesis by human cystathionine gamma-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia, J. Biol. Chem, vol.284, pp.11601-11612, 2009.

L. Papatheodorou and N. Weiss, Vascular oxidant stress and inflammation in hyperhomocysteinemia, Antioxid. Redox Signal, vol.9, pp.1941-1958, 2007.

K. L. Schalinske and A. L. Smazal, Homocysteine imbalance: a pathological metabolic marker, Adv. Nutr, vol.3, pp.755-762, 2012.

H. J. Blom and Y. Smulders, With special references to cardiovascular disease and neural tube defects, J. Inherit. Metab. Dis, vol.34, pp.75-81, 2011.

H. M. Kwon, Y. S. Lee, H. J. Bae, and D. W. Kang, Homocysteine as a predictor of early neurological deterioration in acute ischemic stroke, Stroke, vol.45, pp.871-873, 2014.

J. Per?a-kaján, T. Twardowski, and H. Jakubowski, Mechanisms of homocysteine toxicity in humans, Amino Acids, vol.32, pp.561-572, 2007.

C. F. Sun, T. R. Haven, T. L. Wu, K. C. Tsao, and J. T. Wu, Serum total homocysteine increases with the rapid proliferation rate of tumor cells and decline upon cell death: a potential new tumor marker, Clin. Chim. Acta, vol.321, pp.55-62, 2002.

L. L. Wu and J. Wu, Hyperhomocysteinemia is a risk factor for cancer and a new potential tumor marker, Clin. Chim. Acta, vol.322, pp.21-28, 2002.

S. M. Naushad, Impact of hyperhomocysteinemia on breast cancer initiation and progression: epigenetic perspective, Cell Biochem. Biophys, vol.68, pp.397-406, 2014.

A. Seabra and H. F. Deutsch, Studies on catalase inhibition as related to tumors, J. Biol. Chem, vol.214, pp.447-454, 1955.

M. López-lázaro, Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy, Cancer Lett, vol.252, pp.1-8, 2007.

A. Gupte and R. J. Mumper, Elevated copper and oxidative stress in cancer cells as a target for cancer treatment, Cancer Treat. Rev, vol.35, pp.32-46, 2009.

K. Jomova and M. Valko, Advances in metal-induced oxidative stress and human disease, Toxicology, vol.283, pp.65-87, 2011.

A. A. Da-cunha, Chronic hyperhomocysteinemia induces oxidative damage in the rat lung, Mol. Cell. Biochem, vol.358, pp.153-160, 2011.

F. R. Machado, Homocysteine alters glutamate uptake and Na þ ,K þ -ATPase activity and oxidative status in rats hippocampus: protection by vitamin C. Metab, Brain Dis, vol.26, pp.61-67, 2011.

S. Sen, B. Kawahara, and G. Chaudhuri, Maintenance of higher H 2 O 2 levels, and its mechanism of action to induce growth in breast cancer cells: important roles of bioactive catalase and PP2A. Free Radic, Biol. Med, vol.53, pp.1541-1551, 2012.

P. Nicholls, Classical catalase: ancient and modern, Arch. Biochem. Biophys, vol.525, pp.95-101, 2012.

H. De-groot, Non-oxygen-forming pathways of hydrogen peroxide degradation by bovine liver catalase at low hydrogen peroxide fluxes, Free Radic. Res, vol.40, pp.67-74, 2006.

N. Oshino, R. Oshino, and B. Chance, The characteristics of the 'peroxidatic' reaction of catalase in ethanol oxidation, Biochem. J, vol.131, pp.555-563, 1973.

A. M. Vetrano, Characterization of the oxidase activity in mammalian catalase, J. Biol. Chem, vol.280, pp.35372-35381, 2005.

P. Nicholls, The action of anions on catalase peroxide compounds, Biochem. J, vol.81, pp.365-374, 1961.

P. Nicholls, The formation and properties of sulphmyoglobin and sulphcatalase, Biochem J, vol.81, pp.374-383, 1961.

F. Millar, J. M. Wrigglesworth, and P. Nicholls, Ligand binding to catalase and metmyoglobin. Direct measurements of proton involvement, Eur. J. Biochem, vol.117, pp.13-17, 1981.

W. M. Dale and C. Russell, A study of the irradiation of catalase by ionizing radiations in the presence of cysteine, cystine and glutathione, Biochem. J, vol.62, pp.50-57, 1956.

A. Takeda, T. Miyahara, A. Hachimori, and T. Samejima, The interactions of thiol compounds with porcine erythrocyte catalase, J. Biochem, vol.87, pp.429-439, 1980.

M. R. Hellmich, C. Coletta, C. Chao, and C. Szabo, The therapeutic potential of cystathionine b-synthetase/hydrogen sulfide inhibition in cancer, Antioxid. Redox Signal, vol.22, pp.424-448, 2015.

B. V. Nagpure and J. S. Bian, Brain, learning, and memory: role of H2S in neurodegenerative diseases, Handb. Exp. Pharmacol, vol.230, pp.193-215, 2015.

W. Chuang, J. Heldt, and H. E. Van-wart, Resonance Raman spectra of bovine liver catalase compound II. Similarity of the heme environment to horseradish peroxidase compound II, J. Biol. Chem, vol.264, pp.14209-14215, 1989.

D. M. Bandara, M. Sono, G. S. Bruce, A. R. Brash, and J. H. Dawson, Coordination modes of tyrosinate-ligated catalase-type heme enzymes: magnetic circular dichroism studies of Plexaura homomalla allene oxide synthase, Mycobacterium avium ssp. paratuberculosis protein-2744c, and bovine liver catalase in their ferric and ferrous states, J. Inorg. Biochem, vol.105, pp.1786-1794, 2011.

Y. Kono and I. Fridovich, Superoxide radical inhibits catalase, J. Biol. Chem, vol.257, pp.5751-5754, 1982.

P. M. Wood, The potential diagram for oxygen at pH 7, Biochem. J, vol.253, pp.287-289, 1988.

E. Nagababu and J. M. Rifkind, Heme degradation by reactive oxygen species, Antioxid. Redox Signal, vol.6, pp.967-978, 2004.

R. Hoogenboom, Thiol-yne chemistry: a powerful tool for creating highly functional materials, Angew. Chem. Int. Ed. Engl, vol.49, pp.3415-3417, 2010.

D. I. Potapenko, Reversible reactions of thiols and thiyl radicals with nitrone spin traps, J. Phys. Chem. B, vol.108, pp.9315-9324, 2004.

B. B. Ríos-gonzález, E. M. Román-morales, R. Pietri, and J. López-garriga, Hydrogen sulfide activation in hemeproteins: the sulfheme scenario, J. Inorg. Biochem, vol.133, pp.78-86, 2014.

O. Mozziconacci, B. A. Kerwin, and C. Schöneich, Reversible hydrogen transfer reactions of cysteine thiyl radicals in peptides: the conversion of cysteine into dehydroalanine and alanine, and of alanine into dehydroalanine, J. Phys. Chem. B, vol.115, pp.12287-12305, 2011.

U. Bandyopadhyay, D. K. Bhattacharyya, R. Chatterjee, and R. K. Banerjee, Irreversible inactivation of lactoperoxidase by mercaptomethylimidazole through generation of a thiyl radical: its use as a probe to study the active site, Biochem. J, vol.306, pp.751-757, 1995.

F. J. Romero, I. Ordoñez, A. Arduini, and E. Cadenas, The reactivity of thiols and disulfides with different redox states of myoglobin. Redox and addition reactions and formation of thiyl radical intermediates, J. Biol. Chem, vol.267, pp.1680-1688, 1992.

L. Casella, Mechanism of enantioselective oxygenation of sulfides catalyzed by chloroperoxidase and horseradish peroxidase. Spectral studies and characterization of enzyme-substrate complexes, Biochemistry, vol.31, pp.9451-9459, 1992.

P. Plé and L. J. Marnett, Alkylaryl sulfides as peroxidase reducing substrates for prostaglandin H synthase. Probes for the reactivity and environment of the ferryl-oxo complex, J. Biol. Chem, vol.264, pp.13983-13993, 1989.

T. H. Poole, Strained cycloalkynes as new protein sulfenic acid traps, J. Am. Chem. Soc, vol.136, pp.6167-6170, 2014.

P. Friis, P. Helboe, and P. O. Larsen, Synthesis and resolution of vinylglycine, a beta,gamma-unsaturated alpha-amino acid, Acta Chem. Scand. B, vol.28, pp.317-321, 1974.

L. Huang, C. Colas, and P. R. Ortiz-de-montellano, Oxidation of carboxylic acids by horseradish peroxidase results in prosthetic heme modification and inactivation, J. Am. Chem. Soc, vol.126, pp.12865-12873, 2004.

L. Huang, G. Wojciechowski, and P. R. Ortiz-de-montellano, Prosthetic heme modification during halide ion oxidation. Demonstration of chloride oxidation by horseradish peroxidase, J. Am. Chem. Soc, vol.127, pp.5345-5353, 2005.

G. Wojciechowski, L. Huang, and P. R. Ortiz-de-montellano, Autocatalytic modification of the prosthetic heme of horseradish but not lactoperoxidase by thiocyanate oxidation products. A role for heme-protein covalent cross-linking, J. Am. Chem. Soc, vol.127, pp.15871-15879, 2005.

P. R. Ortiz-de-montellano, Catalytic sites of hemoprotein peroxidases, Annu. Rev. Pharmacol. Toxicol, vol.32, pp.89-107, 1992.

G. J. Abhilash, *NO2-mediated meso-hydroxylation of iron(III) porphyrin, Inorg. Chem, vol.48, pp.1790-1792, 2009.

S. Brogioni, The role of the sulfonium linkage in the stabilization of the ferrous form of myeloperoxidase: a comparison with lactoperoxidase, Biochim. Biophys. Acta, vol.1784, pp.843-849, 2008.

R. Mancuso and B. Gabriele, Recent advances in the synthesis of thiophene derivatives by cyclization of functionalized alkynes, Molecules, vol.19, pp.15687-15719, 2014.

I. R. Younis, Dehydroalanine analog of glutathione: an electrophilic busulfan metabolite that binds to human glutathione S-transferase A1-1, J. Pharmacol. Exp. Ther, vol.327, pp.770-776, 2008.

G. J. Bernardes, J. M. Chalker, J. C. Errey, and B. G. Davis, Facile conversion of cysteine and alkyl cysteines to dehydroalanine on protein surfaces: versatile and switchable access to functionalized proteins, J. Am. Chem. Soc, vol.130, pp.5052-5053, 2008.

J. M. Chalker, L. Lercher, N. R. Rose, C. J. Schofield, and B. G. Davis, Conversion of cysteine into dehydroalanine enables access to synthetic histones bearing diverse post-translational modifications, Angew. Chem. Int. Ed. Engl, vol.51, pp.1835-1839, 2012.

L. A. Montoya, X. Shen, J. J. Mcdermott, C. G. Kevil, and M. D. Pluth, Mechanistic investigations reveal that dibromobimane extrudes sulfur from biological sulfhydryl sources other than hydrogen sulfide, Chem. Sci, vol.6, pp.294-300, 2015.

C. M. Park, R. L. Nagel, and . Sulfhemoglobinemia, Clinical and molecular aspects, N. Engl. J. Med, vol.310, pp.1579-1584, 1984.

A. Saeedi, A. Najibi, and A. Mohammadi-bardbori, Effects of long-term exposure to hydrogen sulfide on human red blood cells, Int. J. Occup. Environ. Med, vol.6, pp.20-25, 2015.

B. L. Predmore, D. J. Lefer, and G. Gojon, Hydrogen sulfide in biochemistry and medicine, Antioxid. Redox Signal, vol.17, pp.119-140, 2012.

S. H. Libardi, H. Pindstrup, J. M. Amigo, D. R. Cardoso, and L. H. Skibsted, Reduction of ferrylmyoglobin by cysteine as affected by pH, RCS Adv, vol.4, pp.60953-60958, 2014.

S. Sen, Role of cystathionine b-synthase in human breast cancer. Free Radic, Biol. Med, vol.86, pp.228-238, 2015.

B. D. Paul, Cystathionine g-lyase deficiency mediates neurodegeneration in Huntington's disease, Nature, vol.509, pp.96-100, 2014.

K. L. Flannigan, Impaired hydrogen sulfide synthesis and IL-10 signaling underlie hyperhomocysteinemia-associated exacerbation of colitis, Proc. Natl Acad. Sci. USA, vol.111, pp.13559-13564, 2014.

T. S. Macfie, DUOX2 and DUOXA2 form the predominant enzyme system capable of producing the reactive oxygen species H2O2 in active ulcerative colitis and are modulated by 5-aminosalicylic acid, Inflamm. Bowel Dis, vol.20, pp.514-524, 2014.

J. M. Boutell, J. D. Wood, P. S. Harper, and A. L. Jones, Huntingtin interacts with cystathionine beta-synthase, Hum. Mol. Genet, vol.7, pp.371-378, 1998.

S. G. Rhee, K. S. Yang, S. W. Kang, H. A. Woo, and T. S. Chang, Controlled elimination of intracellular H(2)O(2): regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification, Antioxid. Redox Signal, vol.7, pp.619-626, 2005.

E. Yakunin, The regulation of catalase activity by PPAR g is affected by a-synuclein, Ann. Clin. Transl. Neurol, vol.1, pp.145-159, 2014.

E. R. Deleon, A case of mistaken identity: are reactive oxygen species actually reactive sulfide species?, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.310, pp.549-560, 2016.

W. Duan, Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson's disease, J. Neurochem, vol.80, pp.101-110, 2002.

S. Longen, Quantitative persulfide site identification (qPerS-SID) reveals protein targets of H2S releasing donors in mammalian cells, Sci. Rep, vol.6, p.29808, 2016.