Nonparametric multiple change-point estimation for analyzing large Hi-C data matrices

Abstract : We propose a novel nonparametric approach to estimate the location of block boundaries (change-points) of non-overlapping blocks in a random symmetric matrix which consists of random variables whose distribution changes from block to block. Our change-point location estimators are based on nonparametric homogeneity tests for matrices. We first provide some theoretical results for these tests. Then, we prove the consistency of our change-point location estimators. Some numerical experiments are also provided in order to support our claims. Finally, our approach is applied to Hi-C data which are used in molecular biology to study the influence of chromosomal conformation on cell function.
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01468198
Contributeur : Vincent Brault <>
Soumis le : mercredi 15 février 2017 - 11:37:11
Dernière modification le : vendredi 5 octobre 2018 - 17:56:40
Document(s) archivé(s) le : mardi 16 mai 2017 - 13:09:36

Fichier

MuChPoint_HAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Relations

Citation

Vincent Brault, Sarah Ouadah, Laure Sansonnet, Céline Lévy-Leduc. Nonparametric multiple change-point estimation for analyzing large Hi-C data matrices. Journal of Multivariate Analysis, Elsevier, 2018, 165, pp.143-165. 〈http://www.sciencedirect.com/science/article/pii/S0047259X17307753〉. 〈10.1016/j.jmva.2017.12.005〉. 〈hal-01468198〉

Partager

Métriques

Consultations de la notice

680

Téléchargements de fichiers

149