Package 'blockseg'
Julien Chiquet, Vincent Brault

To cite this version:
Julien Chiquet, Vincent Brault. Package 'blockseg'. Package for the software R. 2016. <hal-01455720>

HAL Id: hal-01455720
https://hal.archives-ouvertes.fr/hal-01455720
Submitted on 3 Feb 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Package ‘blockseg’

February 10, 2016

Type Package
Title Two Dimensional Change-Points Detection
Version 0.2
Date 2016-02-10
Description Segments a matrix in blocks with constant values.
License GPL (>= 2.0)
Imports Rcpp (>= 0.12.1), Matrix, ggplot2, reshape2, methods
LinkingTo Rcpp, RcppArmadillo
criteria-class.R stabsel-class.R stabsel.R blockseg-package.R
RoxygenNote 5.0.1
NeedsCompilation yes
Author Julien Chiquet [aut, cre],
Vincent Brault [aut]
Maintainer Julien Chiquet <julien.chiquet@gmail.com>
Repository CRAN
Date/Publication 2016-02-10 18:57:06

R topics documented:

blockseg-package ... 2
blockSeg .. 2
blockSeg-class ... 3
criteria ... 4
evolution .. 6
plot.blockSeg-method ... 7
plot,stab.blockSeg-method 8
predict.blockSeg-method ... 9
rblockdata ... 9
stab.blockSeg ... 10
stab.blockSeg-class ... 11

Index 12
Description

This package is designed to segment a matrix in blocks with constant values.

Features

Package for the segmentation of the rows and columns inducing a grid.

Algorithm

blockseg, stab.blockseg

Technical remarks

Display of the result with plot, blockseg-method and plot, stab.blockseg-method and the evolution with predict, blockseg-method and evolution, stab.blockseg-method.

Author(s)

Julien Chiquet <julien.chiquet@gmail.com>
Vincent Brault <vincent.brault@agroparistech.fr>

References

Vincent Brault, Julien Chiquet, Celine Levy-Leduc. A Fast Approach for Multiple Change-point Detection in Two-dimensional Data, preprint

Description

Produce a blockwise estimation of a matrix.

Usage

blockSeg(Y, max.break = floor(min(ncol(Y), nrow(Y))/10 + 1),
max.var = floor(ncol(Y)^2/2), verbose = TRUE, Beta = FALSE)
Arguments

Y matrix of observations.
max.break a positive integer less than number of columns and number of rows. By default, floor(min(ncol(Y),nrow(Y))/10+1).
max.var a positive integer less than number of columns times number of rows. By default, ncol(Y)**2/2.
verbose logical. To display each step. By default TRUE.
Beta logical. To save each Beta associated at each lambda. By default FALSE (very heavy in memory space).

Examples

model parameters
n <- 100
K <- 5
mu <- suppressWarnings(matrix(rep(c(1,0),ceiling(K**2/2)), K,K))
Y <- rblockdata(n,mu,sigma=.5)$Y
res <- blockSeg(Y, 50)

blockSeg-class Class "blockSeg"

Description

Class of object returned by the blockSeg function.

Usage

S4 method for signature 'blockSeg'
print(x, ...)

S4 method for signature 'blockSeg'
show(object)

getComplexity(object)

S4 method for signature 'blockSeg'
getComplexity(object)

S4 method for signature 'blockSeg'
residuals(object, Y)

S4 method for signature 'blockSeg'
deviance(object, Y)
getBreaks(object)

S4 method for signature 'blockSeg'
getBreaks(object)

getCompressYhat(object, Y)

S4 method for signature 'blockSeg'
getCompressYhat(object, Y)

Arguments

x in the print method, a blockSeg object

... in the print method, additional parameters (ignored)

object an object with class blockSeg

Y the original data matrix

Slots

Beta a Matrix object of type dgCMatrix, encoding the solution path of the underlying LARS algorithm. Omitted if the blockSeg function was called with the option Beta=FALSE.

Lambda a numeric vector with the successive values of Lambda, that is, the value of the penalty parameter corresponding to a new event in the path (either a variable activation or deactivation).

RowBreaks a list of vectors, one per step of the LARS algorithm. Each vector contains the breaks currently identified along the ROWS of the 2-dimensional signal at the current step.

ColBreaks a list of vectors, one per step of the LARS algorithm. Each vector contains the breaks currently identified along the COLUMNS of the 2-dimensional signal at the current step.

Actions a list with the successive actions at each step of the LARS algorithm.

See Also

See also `plot,blockSeg-method, predict,blockSeg-method` and `blockSeg`.

<table>
<thead>
<tr>
<th>criteria</th>
<th>Penalized criteria based on estimation of degrees of freedom</th>
</tr>
</thead>
</table>

Description

Produce a plot or send back the values of some penalized criteria accompanied with the vector(s) of parameters selected accordingly. The default behavior plots the BIC and the AIC (with respective factor \(\log(n) \) and \(2 \)) yet the user can specify any penalty.
Usage

criteria(object, Y, penalty = setNames(c(2, log(length(Y))), c("AIC", "BIC")), sigma = NULL, log.scale = TRUE, xvar = "lambda", plot = TRUE)

S4 method for signature 'blockSeg'
criteria(object, Y, penalty = setNames(c(2, log(length(Y))), c("AIC", "BIC")), sigma = NULL, log.scale = TRUE, xvar = "lambda", plot = TRUE)

Arguments

object output of a fitting procedure of the blockseg package (e.g. blockSeg). Must be of class blockSeg.

Y matrix of observations.

penalty a vector with as many penalties a desired. The default contains the penalty corresponding to the AIC and the BIC (2 and log(n)). Setting the "names" attribute, as done in the default definition, leads to outputs which are easier to read.

sigma scalar: an estimate of the residual variance. When available, it is plugged-in the criteria, which may be more relevant. If NULL (the default), it is estimated as usual (see details).

log.scale logical; indicates if a log-scale should be used when xvar="lambda". Default is TRUE.

xvar variable to plot on the X-axis: either "df" (the estimated degrees of freedom), "lambda" (\(\lambda_1\) penalty level) or "fraction" (\(\ell_1\)-norm of the coefficients). Default is set to "lambda".

plot logical; indicates if the graph should be plotted on call. Default is TRUE.

Value

When plot is set to TRUE, an invisible ggplot2 object is returned, which can be plotted via the print method. On the other hand, a list with a two data frames containing the criteria and the chosen vector of parameters are returned.

Note

When sigma is provided, the criterion takes the form

\[
\left\| y - X\hat{\beta} \right\|^2 + \text{penalty} \times \frac{\hat{\text{df}}}{n} \sigma^2.
\]

When it is unknown, it writes

\[
\log \left(\left\| y - X\hat{\beta} \right\|^2 \right) + \text{penalty} \times \hat{\text{df}}.
\]

Estimation of the degrees of freedom (for the elastic-net, the LASSO and also bounded regression) are computed by applying and adapting the results of Tibshirani and Taylor (see references below).
References

See Also

blockSeg.

Examples

```r
n <- 100
K <- 5
mu <- suppressWarnings(matrix(rep(c(1,0),ceiling(K**2/2)), K,K))
Y <- rblockdata(n,mu,sigma=.5)$Y
res <- blockSeg(Y, 50)
criteria(res, Y, sigma=.5)
```

evolution

Plot method for a stab.blockSeg object

Description

Produce a plot of two-dimensional segmentation of a stab.blockSeg fit.

Usage

```r
evolution(x, y, thresholds = 10 * (8:1), postprocessing = list(post = TRUE, adjacent = 2), col = "GrayLevel", ask = TRUE)
```

```r
## S4 method for signature 'stab.blockSeg'
evolution(x, y, thresholds = 10 * (8:1), postprocessing = list(post = TRUE, adjacent = 2), col = "GrayLevel", ask = TRUE)
```

Arguments

- `x`: an object of class stab.blockSeg.
- `y`: the observations data (or a transformation).
- `thresholds`: the thresholds used (percent the maximum value). By default, thresholds = 10 * (8:1).
- `postprocessing`: the condition if plot used a post-processing (if $post=TRUE) or not. If there is a post-processing, post-processing$adjacent is the maximal distance between two points.
- `col`: colours of the graphics. By default, it is "GrayLevel" to black and white colours. If it is another "character", it is a level blue or red. Else, it is possible to propose a sequence with the colour (rgb format).
ask If TRUE, to hit will be necessary to see next plot.
... used for S4 compatibility.

See Also

stab.blockSeg.

Examples

n <- 100
model parameters
K <- 5
mu <- suppressWarnings(matrix(rep(c(1,0),ceiling(K**2/2)), K,K))
Y <- rblockdata(n,mu,sigma=.5)$Y
stab.out <- stab.blockSeg(Y, 100, 15)
evolution(stab.out,Y)

plot(blockSeg-method Plot method for a blockSeg object

Description

Produce a plot of two-dimensional segmentation of a blockSeg fit.

Usage

S4 method for signature 'blockSeg'
plot(x, y, lambda = NULL, ask = TRUE,
 col = "GrayLevel", ...)

Arguments

x an object of class blockSeg.

y used for S4 compatibility.

lambda parameter used in the LASSO.

ask If TRUE, to hit will be necessary to see next plot.

col for the colors of the representations

... used for S4 compatibility.

Value

a ggplot2 object which can be plotted via the print method.

See Also

blockSeg.
Description

Produce a plot of two-dimensional segmentation of a `stab.blockSeg` fit.

Usage

```r
## S4 method for signature 'stab.blockSeg'
plot(x, y, threshold = 40,
     postprocessing = list(post = TRUE, adjacent = 2), col = "GrayLevel", ...)
```

Arguments

- `x`: an object of class `stab.blockSeg`.
- `y`: the observations data (or a transformation).
- `threshold`: the threshold used (percent the maximum value).
- `postprocessing`: the condition if plot used a post-processing (if `post=TRUE`) or not. If there is a post-processing, `post-processing$adjacent` is the maximal distance between two points.
- `col`: colours of the graphics. By default, it is "GrayLevel" to black and white colours. If it is another "character", it is a level blue or red. Else, it is possible to propose a sequence with the colour (rgb format).
- `...`: used for S4 compatibility.

See Also

- `stab.blockSeg`
- `stab.blockSeg`

Examples

```r
## Not run:
n <- 100
## model parameters
K <- 5
mu <- suppressWarnings(matrix(rep(c(1,0),ceiling(K**2/2)), K,K))
Y <- rblockdata(n, mu, sigma=.5)$Y
stab.out <- stab.blockSeg(Y, 100, 15)
plot(stab.out, Y)
## End(Not run)
```
predict,blockSeg-method

Description

Produce a prediction for a vector of lambda parameter and an array of class.

Usage

S4 method for signature 'blockSeg'
predict(object, Y, lambda = NULL)

Arguments

- **object**: an object of class blockSeg.
- **Y**: matrix of observations.
- **lambda**: a numeric vector giving the list of λ for which to predict. By default, NULL. If NULL, it is set to the lambdalist slot of object. If this slot is empty, lambda is set to the fusion times detected in the blockSeg function.

See Also

blockSeg.

Examples

```r
require(blockseg)
n <- 100
K <- 5
mu <- suppressWarnings(matrix(rep(c(1,0),ceiling(K**2/2)), K,K))
Y <- rblockdata(n,mu,sigma=.5)$Y
res <- blockSeg(Y, 100)
predict(res, Y, lambda=slot(res, "Lambda")[1:3])
```

rblockdata

Random generation noisy blockwise matrices

Description

Function to draw data.

Usage

```r
rblockdata(n, mu, sigma, type = c("Eq", "NEq", "NEqbis"))
```
Arguments

n
number of rows and columns.

mu
symetric matrix to the means.

sigma
variance of the variables.

type
represent the spacing between two change-point: "Eq" for a homogenous space-ment, "NEq" for an arithmetic spacement and "NEqbis" for a decreasing arith-

Examples

model parameters
n <- 100
K <- 5
mu <- suppressWarnings(matrix(rep(c(1,0),ceiling(K**2/2)), K,K))
Y <- rblockdata(n,mu,sigma=.5)

Description

Model selection for the blockSeg algorithm.

Usage

stab.blockSeg(Y, nsimu, max.break, max.var = floor(ncol(Y)^2/8),
 mc.cores = 2, verbose = TRUE)

Arguments

Y
matrix of observations.

nsimu
a positive integer.

max.break
a positive integer less than number of columns divided by 2 and number of rows divided by 2.

max.var
a positive integer less than number of columns times number of rows. By de-
default, ncol(Y)**2/8.

mc.cores
a positive integer giving the number of cores used. If you use windows, the parallelization is impossible. By default, 2

verbose
logical. To display each step. By default TRUE.
Examples

```r
## model parameters
n <- 100
K <- 5
mu <- suppressWarnings(matrix(rep(c(1, 0), ceiling(K**2/2)), K, K))
Y <- rblockdata(n, mu, sigma=.5)$Y
res <- stab.blockSeg(Y, 100, 20)
```

Description

Class of object returned by the `stab.blockSeg` function.

Slots

- **RowBreaks**: a vectors of length the number of rows. Each case contains the number of active variable identified along the stability selection.
- **ColBreaks**: a vectors of length the number of columns. Each case contains the number of active variable identified along the stability selection.

Methods

Specific plotting and predict methods are available and documented (`plot`, `stab.blockSeg-method`, `evolution`, `stab.blockSeg-method`).

See Also

See also `plot`, `stab.blockSeg-method`, `evolution`, `stab.blockSeg-method` `print`, `blockSeg-method` and `stab.blockSeg`.
Index

*Topic class
 stab.blockSeg-class, 11

blockSeg, 2, 4–7, 9
blockSeg-class, 3
blockseg-package, 2

criteria, 4
criteria, blockSeg-method (criteria), 4

deviance, blockSeg-method
 (blockSeg-class), 3

evolution, 6
evolution, stab.blockSeg-method
 (evolution), 6

getBreaks (blockSeg-class), 3
getBreaks, blockSeg-method
 (blockSeg-class), 3
getComplexity (blockSeg-class), 3
getComplexity, blockSeg-method
 (blockSeg-class), 3
getCompressYhat (blockSeg-class), 3
getCompressYhat, blockSeg-method
 (blockSeg-class), 3

plot, blockSeg-method, 7
plot, stab.blockSeg-method, 8
predict, blockSeg-method, 9
print, blockSeg-method (blockSeg-class), 3
print, stab.blockSeg-method
 (stab.blockSeg-class), 11

rblockdata, 9
residuals, blockSeg-method
 (blockSeg-class), 3

show, blockSeg-method (blockSeg-class), 3

show, stab.blockSeg-method,
 (stab.blockSeg-class), 11
stab.blockSeg, 2, 7, 8, 10, 11
stab.blockSeg-class, 11