K. Davies, M. Delsignore, and S. Lin, Protein damage and degradation by oxygen radicals. II. Modification of amino acids, J Biol Chem, vol.262, pp.9902-9909, 1987.

A. Promeyrat, P. Gatellier, B. Lebret, K. Kajak-siemaskzo, L. Aubry et al., Evaluation of protein aggregation in cooked meat, Food Chemistry, vol.121, issue.2, pp.412-419, 2010.
DOI : 10.1016/j.foodchem.2009.12.057

P. Gatellier, A. Kondjoyan, S. Portangen, and V. Santé-lhoutellier, Effect of cooking on protein oxidation in n-3 polyunsaturated fatty acids enriched beef. Implication on nutritional quality, Meat Science, vol.85, issue.4, pp.645-50, 2010.
DOI : 10.1016/j.meatsci.2010.03.018

M. Morzel, P. Gatellier, T. Sayd, M. Renerre, and E. Laville, Chemical oxidation decreases proteolytic susceptibility of skeletal muscle myofibrillar proteins, Meat Science, vol.73, issue.3, pp.536-579, 2006.
DOI : 10.1016/j.meatsci.2006.02.005

T. Popova and P. Marinova, Lipid and protein oxidation during cooking in meat of lambs reared indoors and on pasture, Bulg J Agric Sci, vol.19, pp.590-594, 2013.

V. Santé-lhoutellier, L. Aubry, and P. Gatellier, Effect of Oxidation on In Vitro Digestibility of Skeletal Muscle Myofibrillar Proteins, Journal of Agricultural and Food Chemistry, vol.55, issue.13, pp.5343-5351, 2007.
DOI : 10.1021/jf070252k

A. Badiani, S. Stipa, F. Bitossi, P. Gatta, G. Vignola et al., Lipid composition, retention and oxidation in fresh and completely trimmed beef muscles as affected by common culinary practices, Meat Science, vol.60, issue.2, pp.169-86, 2002.
DOI : 10.1016/S0309-1740(01)00119-X

I. Chelh, P. Gatellier, and V. Sante-lhoutellier, Characterisation of fluorescent Schiff bases formed during oxidation of pig myofibrils, Meat Science, vol.76, issue.2, pp.210-215, 2007.
DOI : 10.1016/j.meatsci.2006.10.028

J. Leonil, D. Molle, J. Fauquant, J. Maubois, R. Pearce et al., Characterization by Ionization Mass Spectrometry of Lactosyl ?-Lactoglobulin Conjugates Formed During Heat Treatment of Milk and Whey and Identification of One Lactose-Binding Site, Journal of Dairy Science, vol.80, issue.10, pp.2270-81, 1997.
DOI : 10.3168/jds.S0022-0302(97)76176-9

J. Oõbrien and P. Morrissey, Nutritional and toxicological aspects of the Maillard browning reaction in foods, Critical Reviews in Food Science and Nutrition, vol.14, issue.3, pp.211-259, 1989.
DOI : 10.1016/0278-6915(85)90004-3

F. Evangelisti, C. Calcagno, S. Nardi, and P. Zunin, Deterioration of protein fraction by Maillard reaction in dietetic milks, Journal of Dairy Research, vol.66, issue.2, pp.237-280, 1999.
DOI : 10.1017/S0022029999003453

I. Chelh, P. Gatellier, and V. Sante-lhoutellier, Technical note: A simplified procedure for myofibril hydrophobicity determination, Meat Science, vol.74, issue.4, pp.681-684, 2006.
DOI : 10.1016/j.meatsci.2006.05.019

V. Santé-lhoutellier, T. Astruc, P. Marinova, E. Greve, and P. Gatellier, Effect of Meat Cooking on Physicochemical State and in Vitro Digestibility of Myofibrillar Proteins, Journal of Agricultural and Food Chemistry, vol.56, issue.4, pp.1488-94, 2008.
DOI : 10.1021/jf072999g

R. Filgueras, P. Gatellier, C. Ferreira, and R. Zambiaki, Nutritional value and digestion rate of rhea meat proteins in association with storage and cooking processes, Meat Science, vol.89, issue.1, pp.6-12, 2011.
DOI : 10.1016/j.meatsci.2011.02.028

N. Kamin-belsky, A. Brillon, R. Arav, and N. Shaklai, Degradation of Myosin by Enzymes of the Digestive System:? Comparison between Native and Oxidatively Cross-Linked Protein, Journal of Agricultural and Food Chemistry, vol.44, issue.7, pp.1641-1647, 1996.
DOI : 10.1021/jf950413x

M. Bax, A. L. Ferreira, C. Daudin, J. Gatellier, P. Rémond et al., Cooking Temperature Is a Key Determinant of in Vitro Meat Protein Digestion Rate: Investigation of Underlying Mechanisms, Journal of Agricultural and Food Chemistry, vol.60, issue.10, pp.2569-76, 2012.
DOI : 10.1021/jf205280y

M. Bax, T. Sayd, A. L. Ferreira, C. Viala, D. Chambon et al., Muscle composition slightly affects in vitro digestion of aged and cooked meat: Identification of associated proteomic markers, Food Chemistry, vol.136, issue.3-4, pp.1249-62, 2013.
DOI : 10.1016/j.foodchem.2012.09.049

M. Oberli, A. Marsset-baglieri, G. Airinei, V. Sante-lhoutellier, N. Khodorova et al., High True Ileal Digestibility but Not Postprandial Utilization of Nitrogen from Bovine Meat Protein in Humans Is Moderately Decreased by High-Temperature, Long-Duration Cooking, Journal of Nutrition, vol.145, issue.10, pp.2221-2229, 2015.
DOI : 10.3945/jn.115.216838

URL : https://hal.archives-ouvertes.fr/hal-01455216

D. Aune, D. Chan, A. Vieira, N. Rosenblatt, D. Vieira et al., Red and processed meat intake and risk of colorectal adenomas: a systematic review and meta-analysis of epidemiological studies, Cancer Causes & Control, vol.1, issue.4, pp.611-638, 2013.
DOI : 10.1016/j.mehy.2006.08.025

A. Cross, M. Leitzmann, M. Gail, A. Hollenbeck, A. Schatzkin et al., A Prospective Study of Red and Processed Meat Intake in Relation to Cancer Risk, PLoS Medicine, vol.29, issue.507, p.325, 2007.
DOI : 10.1371/journal.pmed.0040325.sd002

E. Kim, D. Coelho, and F. Blachier, Review of the association between meat consumption and risk of colorectal cancer, Nutrition Research, vol.33, issue.12, pp.983-94, 2013.
DOI : 10.1016/j.nutres.2013.07.018

URL : https://hal.archives-ouvertes.fr/hal-01173388

R. Santarelli, F. Pierre, and D. Corpet, Processed Meat and Colorectal Cancer: A Review of Epidemiologic and Experimental Evidence, Nutrition and Cancer, vol.60, issue.2, pp.131-175, 2008.
DOI : 10.1080/01635580701684872

URL : https://hal.archives-ouvertes.fr/hal-00334544

N. Ollberding, L. Wilkens, B. Henderson, L. Kolonel, L. Marchand et al., Meat consumption, heterocyclic amines and colorectal cancer risk: The Multiethnic Cohort Study, International Journal of Cancer, vol.22, issue.507, pp.1125-1158, 2012.
DOI : 10.1021/tx900155f

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553660

C. Parr, A. Hjartaker, E. Lund, and M. Veierod, Meat intake, cooking methods and risk of proximal colon, distal colon and rectal cancer: The Norwegian Women and Cancer (NOWAC) cohort study, International Journal of Cancer, vol.13, issue.5, pp.1153-63, 2013.
DOI : 10.1158/1055-9965.EPI-270-2

H. Ajouz, D. Mukherji, and A. Shamseddine, Secondary bile acids: an underrecognized cause of colon cancer, World Journal of Surgical Oncology, vol.12, issue.1, p.164, 2014.
DOI : 10.1080/01635580701525893

N. Bastide, F. Pierre, and D. Corpet, Heme Iron from Meat and Risk of Colorectal Cancer: A Meta-analysis and a Review of the Mechanisms Involved, Cancer Prevention Research, vol.4, issue.2, pp.177-84, 2011.
DOI : 10.1158/1940-6207.CAPR-10-0113

URL : https://hal.archives-ouvertes.fr/hal-00543808

T. Sugimura, Overview of carcinogenic heterocyclic amines, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.376, issue.1-2, pp.211-220, 1997.
DOI : 10.1016/S0027-5107(97)00045-6

A. Samraj, O. Pearce, H. Laubli, A. Crittenden, A. Bergfeld et al., A red meat-derived glycan promotes inflammation and cancer progression, Proceedings of the National Academy of Sciences, vol.41, issue.3, pp.542-549, 2015.
DOI : 10.1371/journal.pone.0058443

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299224

F. Blachier, F. Mariotti, J. Huneau, and D. Tomé, Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences, Amino Acids, vol.223, issue.4, pp.547-62, 2007.
DOI : 10.1042/cs0680193

URL : https://hal.archives-ouvertes.fr/hal-01186779

R. Hughes, E. Magee, and S. Bingham, Protein degradation in the large intestine: relevance to colorectal cancer, Curr Issues Intest Microbiol, vol.1, pp.51-59, 2000.

A. Davila, F. Blachier, M. Gotteland, M. Andriamihaja, P. Benetti et al., Re-print of ?Intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host?, Pharmacological Research, vol.69, issue.1, pp.114-140, 2013.
DOI : 10.1016/j.phrs.2013.01.003

URL : https://hal.archives-ouvertes.fr/hal-01004241

M. Andriamihaja, A. Davila, M. Eklou-lawson, N. Petit, S. Delpal et al., Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet, AJP: Gastrointestinal and Liver Physiology, vol.299, issue.5, pp.1030-1037, 2010.
DOI : 10.1152/ajpgi.00149.2010

URL : https://hal.archives-ouvertes.fr/hal-01173385

B. Geypens, C. D. Evenepoel, P. Hiele, M. Maes, B. Peeters et al., Influence of dietary protein supplements on the formation of bacterial metabolites in the colon., Gut, vol.41, issue.1, pp.70-76, 1997.
DOI : 10.1136/gut.41.1.70

P. Reeves, F. Nielsen, and G. Fahey, AIN-93 purified diets for laboratory rodents: final report of the american institute of nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet, J Nutr, vol.123, pp.1939-51, 1993.

M. Lacroix, C. Bos, J. Léonil, G. Airinei, C. Luengo et al., Compared with casein or total milk protein, digestion of milk soluble proteins is too rapid to sustain the anabolic postprandial amino acid requirement, Am J Clin Nutr, vol.84, pp.1070-1079, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01453940

C. Gaudichon, C. Bos, C. Morens, K. Petzke, F. Mariotti et al., Ileal losses of nitrogen and amino acids in humans and their importance to the assessment of amino acid requirements, Gastroenterology, vol.123, issue.1, pp.50-59, 2002.
DOI : 10.1053/gast.2002.34233

C. Fromentin, P. Sanders, F. Nau, A. M. Fromentin, G. et al., A pilot study for the intrinsic labeling of egg proteins with 15N and 13C, Rapid Communications in Mass Spectrometry, vol.30, issue.1, pp.43-51, 2012.
DOI : 10.1007/978-1-4612-4862-0_14

URL : https://hal.archives-ouvertes.fr/hal-00692496

L. Mosoni, M. Valluy, B. Serrurier, J. Prugnaud, C. Obled et al., Altered response of protein synthesis to nutritional state and endurance training in old rats, Am J Physiol, vol.268, pp.328-363, 1995.

L. Chevalier, C. Bos, C. Gryson, C. Luengo, S. Walrand et al., High-protein diets differentially modulate protein content and protein synthesis in visceral and peripheral tissues in rats, Nutrition, vol.25, issue.9, pp.932-941, 2009.
DOI : 10.1016/j.nut.2009.01.013

URL : https://hal.archives-ouvertes.fr/hal-01547463

X. Liu, M. Beaumont, F. Walker, C. Chaumontet, M. Andriamihaja et al., Beneficial Effects of an Amino Acid Mixture on Colonic Mucosal Healing in Rats, Inflammatory Bowel Diseases, vol.19, issue.13, pp.2895-905, 2013.
DOI : 10.1097/01.MIB.0000435849.17263.c5

URL : https://hal.archives-ouvertes.fr/hal-01186910

N. Kristensen, S. Pierzynowski, and A. Danfaer, Net portal appearance of volatile fatty acids in sheep intraruminally infused with mixtures of acetate, propionate, isobutyrate, butyrate, and valerate., Journal of Animal Science, vol.78, issue.5, pp.1372-1381, 2000.
DOI : 10.2527/2000.7851372x

A. Strocchi, J. Furne, and M. Levitt, A modification of the methylene blue method to measure bacterial sulfide production in feces, Journal of Microbiological Methods, vol.15, issue.2, pp.75-82, 1992.
DOI : 10.1016/0167-7012(92)90071-B

M. Bax, C. Buffière, N. Hafnaoui, C. Gaudichon, I. Savary-auzeloux et al., Effects of Meat Cooking, and of Ingested Amount, on Protein Digestion Speed and Entry of Residual Proteins into the Colon: A Study in Minipigs, PLoS ONE, vol.56, issue.4, p.61252, 2013.
DOI : 10.1371/journal.pone.0061252.t003

URL : https://hal.archives-ouvertes.fr/hal-01186841

K. Silvester and J. Cummings, Does digestibility of meat protein help explain large bowel cancer risk?, Nutrition and Cancer, vol.55, issue.3, pp.279-88, 1995.
DOI : 10.1080/01635588709513937

S. Gropper and J. Smith, Advanced nutrition and human metabolism, 2013.

S. Wen, G. Zhou, L. Li, X. Xu, X. Yu et al., Digestion of Pork Proteins: A Peptidomic Perspective, Journal of Agricultural and Food Chemistry, vol.63, issue.1, pp.250-61, 2015.
DOI : 10.1021/jf505323g

G. Gilani and E. Sepehr, Protein digestibility and quality in products containing antinutritional factors are adversely affected by old age in rats, J Nutr, vol.133, pp.220-225, 2003.

A. Deglaire and P. Moughan, Animal models for determining amino acid digestibility in humans ??? a review, British Journal of Nutrition, vol.81, issue.S2, pp.273-81, 2012.
DOI : 10.1002/jsfa.2740590321

URL : https://hal.archives-ouvertes.fr/hal-00924764

E. Wisker, B. Knudsen, K. Daniel, M. Feldheim, W. Eggum et al., Digestibilities of energy, protein, fat and nonstarch polysaccharides in a low fiber diet and diets containing coarse or fine whole meal rye are comparable in rats and humans, J Nutr, vol.126, pp.481-489, 1996.

G. Den-besten, K. Van-eunen, A. Groen, K. Venema, D. Reijngoud et al., The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism, The Journal of Lipid Research, vol.54, issue.9, pp.2325-2365, 2013.
DOI : 10.1194/jlr.R036012

M. Attene-ramos, E. Wagner, M. Plewa, and H. Gaskins, Evidence That Hydrogen Sulfide Is a Genotoxic Agent, Molecular Cancer Research, vol.4, issue.1, pp.9-14, 2006.
DOI : 10.1158/1541-7786.MCR-05-0126

M. Medani, D. Collins, N. Docherty, A. Baird, P. Oõconnell et al., Emerging role of hydrogen sulfide in colonic physiology and pathophysiology, Inflammatory Bowel Diseases, vol.17, issue.7, pp.1620-1625, 2011.
DOI : 10.1002/ibd.21528

B. Darcy-vrillon, C. Cherbuy, M. Morel, M. Durand, and P. Duee, Short chain fatty acid and glucose metabolism in isolated pig colonocytes: modulation by NH4 +, Molecular and Cellular Biochemistry, vol.5, issue.2, pp.145-51, 1996.
DOI : 10.1007/BF00426337

H. Ichikawa and T. Sakata, Stimulation of epithelial cell proliferation of isolated distal colon of rats by continuous colonic infusion of ammonia or short-chain fatty acids is nonadditive, J Nutr, vol.128, pp.843-850, 1998.

H. Lin and W. Visek, Colon mucosal cell damage by ammonia in rats, J Nutr, vol.121, pp.887-93, 1991.

K. Kikugawa and T. Kato, Formation of a mutagenic diazoquinone by interaction of phenol with nitrite, Food and Chemical Toxicology, vol.26, issue.3, pp.209-223, 1988.
DOI : 10.1016/0278-6915(88)90121-4

A. Nowak and Z. Libudzisz, Influence of phenol, p-cresol and indole on growth and survival of intestinal lactic acid bacteria, Anaerobe, vol.12, issue.2, pp.80-84, 2006.
DOI : 10.1016/j.anaerobe.2005.10.003

G. Pedersen, J. Brynskov, and T. Saermark, Phenol Toxicity and Conjugation in Human Colonic Epithelial Cells, Scandinavian Journal of Gastroenterology, vol.37, issue.1, pp.74-83, 2002.
DOI : 10.1080/003655202753387392

M. Andriamihaja, A. Lan, M. Beaumont, M. Audebert, X. Wong et al., The deleterious metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells, Free Radical Biology and Medicine, vol.85, pp.219-246, 2015.
DOI : 10.1016/j.freeradbiomed.2015.04.004

P. Louis, G. Hold, and H. Flint, The gut microbiota, bacterial metabolites and colorectal cancer, Nature Reviews Microbiology, vol.4, issue.10, pp.661-72, 2014.
DOI : 10.1128/mBio.00692-13

S. Rasch and H. Algul, A clinical perspective on the role of chronic inflammation in gastrointestinal cancer, Clin Exp Gastroenterol, vol.7, pp.261-72, 2014.

T. Guina, F. Biasi, S. Calfapietra, M. Nano, and G. Poli, Inflammatory and redox reactions in colorectal carcinogenesis, Annals of the New York Academy of Sciences, vol.7, issue.1, pp.95-103, 2015.
DOI : 10.3816/CCC.2008.n.034

URL : https://iris.unito.it/retrieve/handle/2318/1509271/28580/Guina%2c%20Biasi%202014%20PRE%20PRINT.pdf

A. Lan, M. Andriamihaja, J. Blouin, X. Liu, V. Descatoire et al., High-protein diet differently modifies intestinal goblet cell characteristics and mucosal cytokine expression in ileum and colon, The Journal of Nutritional Biochemistry, vol.26, issue.1, pp.91-99, 2015.
DOI : 10.1016/j.jnutbio.2014.09.007

URL : https://hal.archives-ouvertes.fr/hal-01535233

X. Liu, J. Blouin, A. Santacruz, A. Lan, M. Andriamihaja et al., High-protein diet modifies colonic microbiota and luminal environment but not colonocyte metabolism in the rat model: the increased luminal bulk connection, AJP: Gastrointestinal and Liver Physiology, vol.307, issue.4, pp.459-70, 2014.
DOI : 10.1152/ajpgi.00400.2013

URL : https://hal.archives-ouvertes.fr/hal-01173417

D. Corpet, Y. Yin, X. Zhang, C. Remesy, D. Stamp et al., Colonic protein fermentation and promotion of colon carcinogenesis by thermolyzed casein, Nutrition and Cancer, vol.86, issue.3, pp.271-81, 1995.
DOI : 10.1136/jcp.42.6.620

URL : https://hal.archives-ouvertes.fr/hal-00287830

O. Martin, C. Lin, N. Naud, S. Tache, I. Raymond-letron et al., Antibiotic Suppression of Intestinal Microbiota Reduces Heme-Induced Lipoperoxidation Associated with Colon Carcinogenesis in Rats, Nutrition and Cancer, vol.34, issue.1, pp.119-144, 2015.
DOI : 10.1016/j.meatsci.2011.04.009