D. Schrack, X. Coquil, A. Ortar, and M. Benoît, Rémanence des pesticides dans les eaux issues de parcelles 530 agricoles récemment converties à l'Agriculture Biologique, Innovations Agronomiques, vol.4, pp.259-268, 2009.

M. Höök, A. Sivertsson, and A. K. , Validity of the fossil fuel production outlooks in the IPCC Emission 532, 2010.

. Scenarios, Natural Resources Research, pp.63-81

K. Jakobsson, B. Söderbergh, M. Höök, and K. Aleklett, How reasonable are oil production scenarios from public agencies?, Energy Policy, vol.37, issue.11, pp.4809-4818, 2009.
DOI : 10.1016/j.enpol.2009.06.042

S. Shafiee and E. Topal, When will fossil fuel reserves be diminished?, Energy Policy, vol.37, issue.1, pp.536-181, 2009.
DOI : 10.1016/j.enpol.2008.08.016

S. H. Mohr and G. M. Evans, Long term prediction of unconventional oil production, Energy Policy, vol.38, issue.1, pp.265-276, 2010.
DOI : 10.1016/j.enpol.2009.09.015

O. Sirotenko, Agriculture. In Climate Change 2007: Mitigation. Contribution of Working Group III to the 541, 2007.

J. N. Galloway, A. R. Townsend, J. W. Erisman, M. Bekunda, Z. C. Cai et al., Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions, Science, vol.320, issue.5878, pp.546-16889, 2008.
DOI : 10.1126/science.1136674

D. Arrouays, J. Balesdent, J. C. Germon, P. A. Jayet, J. F. Soussana et al., Expertise scientifique 548 collective "Contribution à la lutte contre l'effet de serre, p.549, 2002.

J. H. Spiertz, Nitrogen, sustainable agriculture and food security. A review Agronomic Sustainable 551 Development, pp.43-55, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00886486

P. A. Matson, W. J. Parton, A. G. Power, and M. J. Swift, Agriculture intensification and ecosystems properties, Science, vol.277, pp.553-504, 1997.

D. K. Ray, P. C. West, C. Balzer, L. M. Bennett, S. R. Carpenter et al., Solutions for a cultivated planet, Nature, p.10452, 2011.

U. Köpke and T. Nemecek, Ecological services of faba bean, Field Crops Research, vol.115, issue.3, pp.217-233, 2010.
DOI : 10.1016/j.fcr.2009.10.012

D. Beheydt, P. Boeckx, H. P. Ahmed, V. Cleemput, and O. , N2O emission from conventional and minimum-tilled soils, Biology and Fertility of Soils, vol.9, issue.6, pp.863-873, 2008.
DOI : 10.1007/s00374-008-0271-9

V. Kessel, C. Ventera, R. Six, J. , A. M. Borde et al., Climate, duration, 567 and N placement determine N2O emissions in reduced tillage systems: a meta-analysis, Global Change Biology, 2012.

. Fu-weijun, H. Tunney, and Z. Sheng, Spatial variation of soil test phosphorus in a long-term 570 grazed, experimental grassland field, Journal of Plant Nutrition and Soil Science, vol.173, issue.3, pp.323-331, 2010.

S. Heinze, J. Raupp, and J. R. , Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture, Plant and Soil, vol.40, issue.2, pp.203-215, 2010.
DOI : 10.1007/s11104-009-0102-2

N. Chirinda, J. E. Olesen, J. R. Porter, and P. Schjønning, Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems, Agriculture, Ecosystems & Environment, vol.139, issue.4, pp.584-594, 2010.
DOI : 10.1016/j.agee.2010.10.001

H. L. Tuomisto, I. D. Hodge, P. Riordan, and D. W. Macdonald, Comparing energy balances, greenhouse gas 577 balances and biodiversity impacts of contrasting farming systems with alternative land uses, Agricultural Systems, vol.108, pp.578-620, 2012.

N. Shadbolt, T. Kelly, D. Horne, K. Harrington, P. Kemp et al., Comparisons between 580 organic & conventional pastoral dairy farming, systems: cost of production and profitability, Journal of Farm, p.581, 2009.

D. Ponti, T. Rijk, B. , V. Ittersum, and M. , The crop yield gap between organic and conventional agriculture, Agricultural Systems, vol.108, p.583, 2012.
DOI : 10.1016/j.agsy.2011.12.004

J. Simonsen, J. Posner, M. Rosemeyer, and J. Baldock, Endogeic and anecic earthworm abundance in six 585, 2010.

H. Riley, R. Pommeresche, R. Eltun, S. Hansen, and A. Korsaeth, Soil structure, organic matter and 587 earthworm activity in a comparison, of cropping systems with contrasting tillage, rotations, fertilizer, levels and manure 588 use, pp.275-284, 2008.

S. S. Snapp, L. W. Gentry, and R. Harwood, Management intensity ??? not biodiversity ??? the driver of ecosystem services in a long-term row crop experiment, Agriculture, Ecosystems & Environment, vol.138, issue.3-4, pp.242-248, 2010.
DOI : 10.1016/j.agee.2010.05.005

T. Nemecek, D. Dubois, O. Huguenin-elie, and G. Gaillard, Life cycle assessment of Swiss farming systems: I. Integrated and organic farming, Agricultural Systems, vol.104, issue.3, pp.217-232, 2011.
DOI : 10.1016/j.agsy.2010.10.002

P. Vereijken, A methodical way of prototyping integrated and ecological arable farming systems (I/EAFS) in interaction with pilot farms, European Journal of Agronomy, vol.7, issue.1-3, pp.235-250, 1997.
DOI : 10.1016/S1161-0301(97)00039-7

S. Dogliotti, M. K. Van-ittersum, and R. W. , A method for exploring sustainable development options at farm scale: a case study for vegetable farms in South Uruguay, Agricultural Systems, vol.86, issue.1, pp.29-51, 2005.
DOI : 10.1016/j.agsy.2004.08.002

C. Loyce and J. Wery, Les outils des agronomes pour l'évaluation et la conception de systèmes de culture. 598 L'agronomie aujourd'hui, QUAE éditions, pp.77-95, 2006.

J. Lançon, J. Wery, B. Rapidel, M. Angokaye, E. Gérardeaux et al., An 600 improved methodology for integrated crop management systems, Agronomy of Sustainable Development, pp.101-110, 2007.

C. Bockstaller, L. Guichard, D. Makowski, A. Aveline, P. Girardin et al., Agri-environmental 602 indicators to assess cropping and farming systems. A review, Agronomy of Sustainable Development, pp.139-149, 2008.

P. Debaeke, N. Munier-jolain, M. Bertrand, L. Guichard, J. M. Nolot et al., Iterative 604 design and evaluation of rule-based cropping systems: methodology and case studies, Agronomy of Sustainable 605 Development, pp.73-86, 2009.

K. Coleman and D. S. Jenkinson, A model for the turnover of carbon in soil; Model description and windows 607 users guide, pp.47-608, 1999.

A. Andriulo, B. Mary, and G. J. , Modelling soil carbon dynamics with various cropping sequences on the rolling pampas, Agronomie, vol.19, issue.5, pp.365-379, 1999.
DOI : 10.1051/agro:19990504

URL : https://hal.archives-ouvertes.fr/hal-00885937

K. J. Van-groenigen, A. Hastings, D. Forristal, M. Jones, and S. P. , Soil C storage as affected by tillage 611 and straw management: An assessment using field measurements and model predictions, Ecosystems & 612 Environment, pp.218-225, 2011.

. Ges-'tim, Ministère de l'agriculture, de l'alimentation, de la pêche, de la ruralité et de l Intergovernmental Panel on Climate Change. Climate Change The physical science basis, pp.156-615, 2007.

B. Leteinturier, J. L. Herman, F. De-longueville, L. Quintin, and R. Oger, Adaptation of a crop sequence indicator based on a land parcel management system, Agriculture, Ecosystems & Environment, vol.112, issue.4, pp.324-334, 2006.
DOI : 10.1016/j.agee.2005.07.011

A. Whitmore, A comparison of the performance of nine soil organic matter models using datasets from seven 622 long-term experiments, Geoderma, vol.81, pp.153-225, 1997.

C. Bockstaller, L. Guichard, O. Keichinger, P. Girardin, M. Galan et al., Comparison of methods to 624 assess the sustainability of agricultural systems. A review Agronomy of Sustainable Development, pp.223-235, 2009.

L. De, Y. Liu, K. Chan, M. K. Conyers, G. Li et al., Simulation of soil organic carbon dynamics 626 under different pasture managements using the RothC carbon model, Geoderma, vol.165, pp.69-77, 2011.

C. C. Cerri, Simulating SOC changes in 11 land use change chronosequences from the Brazilian Amazon with 629, 2007.

H. Riley, B. O. Hoel, and A. Ø. Kristoffersen, Economic and environmental optimization of nitrogen fertilizer 632 recommendations for cereals in Norway, Acta Agriculturae Scandinavica, Section B, Soil & Plant Science, vol.62, issue.5, pp.387-633, 2012.

R. P. Zentner, G. P. Lafond, D. A. Derksen, C. N. Nagyd, D. D. Wall et al., Effects of tillage method 637 and crop rotation on non-renewable energy use efficiency for a thin Black Chernozem in the Canadian Prairies, p.638, 2004.

I. Gelfand, S. Snapp, and G. Robertson, Energy Efficiency of Conventional, Organic, and Alternative Cropping Systems for Food and Fuel at a Site in the U.S. Midwest, Environmental Science & Technology, vol.44, issue.10, pp.4006-4011, 2010.
DOI : 10.1021/es903385g

W. Nowacki, Comparison of profitability of potato cultivation in organic and, integrated farming systems. 642 Progress in Plant Protection, pp.1526-1534, 2008.

R. Chikowo, V. Faloya, S. Petit, and N. Munier-jolain, Integrated Weed Management systems allow reduced reliance on herbicides and long-term weed control, Agriculture, Ecosystems & Environment, vol.132, issue.3-4, pp.237-242, 2009.
DOI : 10.1016/j.agee.2009.04.009

J. M. Blazy, A. Ozier-lafontaine, T. Doré, A. Thomas, and J. Wery, A methodological framework that 646 accounts for farm diversity in the prototyping of crop management systems. Application to banana-based systems in 647, 2009.

J. A. Coulter, C. C. Sheaffer, D. L. Wyse, M. J. Haar, P. M. Porter et al., Agronomic Performance of Cropping Systems with Contrasting Crop Rotations and External Inputs, Agronomy Journal, vol.103, issue.1, p.182, 2011.
DOI : 10.2134/agronj2010.0211

M. Moreno, C. Lacasta, R. Meco, and C. Moreno, Rainfed crop energy balance of different farming systems and crop rotations in a semi-arid environment: Results of a long-term trial, Soil and Tillage Research, vol.114, issue.1, pp.18-27, 2011.
DOI : 10.1016/j.still.2011.03.006

V. Feiza, D. Feiziene, A. Auskalnis, and G. Kadziene, Sustainable tillage: results from long-term field 653 experiments on Cambisol, Zemdirbyste (Agriculture), vol.97, issue.2, pp.3-14, 2010.

A. Baturo, Effect of organic system on spring barley stem base health in, comparison with integrated and 655 conventional farming, Journal of Plant Protection Research, vol.47, issue.2, pp.167-178, 2007.

M. Klimekova and Z. Lehocka, Comparison of yields and qualitative characters of spring barley grown, after 657 three preceding crops in an organic farming system in the years, Agronomy Research, vol.7, pp.335-658, 2003.

M. Liebman, L. Gibson, D. Sundberg, A. Heggenstaller, P. Westerman et al., Agronomic and Economic Performance Characteristics of Conventional and Low-External-Input Cropping Systems in the Central Corn Belt, Agronomy Journal, vol.100, issue.3, pp.600-610, 2008.
DOI : 10.2134/agronj2007.0222

M. A. Cavigelli, B. L. Hima, J. C. Hanson, J. R. Teasdale, A. E. Conklin et al., Long-term economic 663 performance of organic and conventional field crops in the mid-Atlantic region. Renewable Agriculture and Food 664 Systems, pp.102-119, 2009.

L. Gal, P. Y. Dugué, P. Faure, G. Novak, and S. , How does research address the design of innovative agricultural production systems at the farm level? A review, Agricultural Systems, vol.104, issue.9, pp.714-728, 2011.
DOI : 10.1016/j.agsy.2011.07.007

J. J. Stoorvogel, J. Bouma, and O. R. , Participatory research for systems analysis: Prototyping for a 668, 2004.

I. Shili-touzi, S. De-tourdonnet, R. Nciri, L. Floch, D. Saulas et al., Is it possible to manage 670 competition between wheat and alfalfa grown as a service plant in an intercropping system in temperate conditions, p.671

R. P. Janzen and H. , Towards a revised coefficient for estimating N2O emissions from legumes. 673 Nutrient Cycling in Agroecosystems 73, pp.171-179, 2005.

L. Alletto, Y. Coquet, and J. Roger-estrade, Two-dimensional spatial variation of soil physical properties in two tillage systems, Soil Use and Management, vol.54, issue.4, pp.432-444, 2010.
DOI : 10.1111/j.1475-2743.2010.00295.x

URL : https://hal.archives-ouvertes.fr/hal-01173211

N. M. Munier-jolain, V. Faloya, J. B. Davaine, L. Biju-duval, D. Meunier et al., A 677 cropping system experiment for testing the principles of integrated weed management: first results, Annales AFPP, p.678, 2004.

S. Deike, B. Pallutt, B. Melander, J. Strassemeyer, and C. O. , Long-term productivity and environmental effects of arable farming as affected by crop rotation, soil tillage intensity and strategy of pesticide use: A case-study of two long-term field experiments in Germany and Denmark, European Journal of Agronomy, vol.29, issue.4, pp.191-685, 2008.
DOI : 10.1016/j.eja.2008.06.001

T. Nemecek, J. F. Von-richthofen, G. Dubois, P. Casta, R. Charles et al., Environmental impacts of introducing grain legumes into European crop rotations, European Journal of Agronomy, vol.28, issue.3, pp.380-393, 2008.
DOI : 10.1016/j.eja.2007.11.004

X. Fu-;-zhang, J. Hui, and . Jizeng, Yield performance and resources use efficiency of winter wheat and 689 summer maize in double late-cropping system, Acta Agronomica Sinica, vol.9, pp.35-1708, 2009.

A. Freibauer, M. D. Rounsevell, P. Smith, and J. Verhagen, Carbon sequestration in the agricultural soils of Europe, Geoderma, vol.122, issue.1, pp.1-23, 2004.
DOI : 10.1016/j.geoderma.2004.01.021

A. R. Mosier, A. D. Halvorson, G. A. Peterson, G. P. Robertson, and L. Sherrod, Measurement of Net Global Warming Potential in Three Agroecosystems, Nutrient Cycling in Agroecosystems, vol.66, issue.1, pp.67-76, 2005.
DOI : 10.1007/s10705-004-7356-0

S. Lehuger, Modélisation des bilans de gaz à effet de serre des agro-systèmes en Europe, Thèse de doctorat de 695 l'Institut des Sciences et Industries du Vivant et de l'Environnement AgroParisTech, pp.184-696, 2009.

D. E. Pelster, F. Larouche, P. Rochette, M. H. Chantigny, S. Allaire et al., N fertilization but not 697 soil tillage affects nitrous oxide emissions from a clay loam soil under a maize?soybean rotation. Soil and Tillage 698 Research, pp.115-116, 2011.

?. Triticale, Maize ? Winter wheat ? (species mixture as a catch crop) Spring field bean -Winter wheat -(species mixture as a catch crop) -Hemp Low energy use: (L-EN) Winter field bean -Winter wheat -Winter oil flax -Winter wheatwhite clover mixture ? (white clover as a catch crop) Spring oat Low greenhouse gas emissions (L-GHG)

. Ile-de-france, and the ROTH C model (V.26-3), for a current soil in the Ile-de-France region (SOM = 1.6%) and the 728 GES'TIM 37 database, for 25-year and 50-year periods. The GHG balance is positive when the amount of carbon emitted 729 in greenhouse gases exceeds that sequestered. Cropping systems: PHEP (productive high environmental performance, 730 L-GHG (low greenhouse gas emissions) and IdF (current system in Ile-de-France region), 2010.