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Abstract

Modern measures of diversity satisfy reasonable axioms, are parameterized to produce

diversity profiles, can be expressed as an effective number of species to simplify their inter-

pretation, and come with estimators that allow one to apply them to real-world data. We

introduce the generalized Simpson’s entropy as a measure of diversity and investigate its

properties. We show that it has many useful features and can be used as a measure of biodi-

versity. Moreover, unlike most commonly used diversity indices, it has unbiased estimators,

which allow for sound estimation of the diversity of poorly sampled, rich communities.

Introduction

Many indices of biodiversity have been proposed based on different definitions of diversity

and different visions of the biological aspects to address [1]. Indeed, measuring diversity

requires both a robust theoretical framework [2] and empirical techniques to effectively esti-

mate it [3]. We focus on species-neutral diversity, i.e. the diversity of the distribution of spe-

cies, ignoring their features. Such measures only make sense when applied to a single

taxocene, i.e. a subset of species in the community under study that belong to the same taxon

(e.g. butterflies) or, more loosely, to a meaningful group (e.g. trees). Classical measures of this

type include richness (the number of species), Shannon’s entropy [4], and Simpson’s index [5].

Since one index is generally insufficient to fully capture the diversity of a community, mod-

ern measures of diversity are parameterizable, allowing the user to give more or less relative

importance to rare versus frequent species [6]. Further, they can be expressed as an effective

number of species [7], which allows for an easy interpretation of their values [8]. Among the

most popular indices of this type are HCDT entropy [9–11] (which includes richness, Simp-

son’s index, and Shannon’s entropy as special cases), Rényi’s entropy [6], and the less-used

Hurlbert’s index [12]. These indices can be used to estimate the diversity of a community and

then to plot their values against the parameter, which controls the weight of rare species, to

obtain a diversity profile [7]. The profiles of two communities can be compared to provide a

partial order of their diversity. If the profiles do not cross, one community can be declared to

be more diverse than the other [13].

PLOS ONE | DOI:10.1371/journal.pone.0173305 March 7, 2017 1 / 11

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Grabchak M, Marcon E, Lang G, Zhang Z

(2017) The generalized Simpson’s entropy is a

measure of biodiversity. PLoS ONE 12(3):

e0173305. doi:10.1371/journal.pone.0173305

Editor: Stefan J. Green, University of Illinois at

Chicago, UNITED STATES

Received: November 3, 2016

Accepted: February 17, 2017

Published: March 7, 2017

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: Data are available

from the entropart package for R, available on

CRAN: https://cran.r-project.org/web/packages/

entropart/index.html.

Funding: This work has benefited from an

“Investissement d’Avenir” grant managed by

Agence Nationale de la Recherche (CEBA, ref. ANR-

10-LABX-25-01).

Competing interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173305&domain=pdf&date_stamp=2017-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173305&domain=pdf&date_stamp=2017-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173305&domain=pdf&date_stamp=2017-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173305&domain=pdf&date_stamp=2017-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173305&domain=pdf&date_stamp=2017-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173305&domain=pdf&date_stamp=2017-03-07
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://cran.r-project.org/web/packages/entropart/index.html
https://cran.r-project.org/web/packages/entropart/index.html


HCDT entropy has many desirable properties [8, 14] but, despite recent progress [15], it

cannot be accurately estimated when the communities are insufficiently sampled [16]. Rényi’s

entropy is related to HCDT entropy by a straightforward transformation: the natural loga-

rithm of the deformed exponential [14]. Its properties are very similar and, hence, it will not

be treated here. Hurlbert’s index has a simple and practical interpretation and can be estimated

with no bias, but only up to when its parameter is strictly less than the sample size.

We introduce generalized Simpson’s entropy as a measure of diversity for its particular per-

formance when it is used to estimate the diversity of small samples from hyper-diverse com-

munities. The generalized Simpson’s entropy zr is parameterized: increasing its parameter r
gives more relative importance to rare species. It has a simple interpretation, specifically, in a

species accumulation curve, zr is the probability that the individual sampled at rank r + 1

belongs to a new species. We show that zr is a valid measure of diversity, satisfying the axioms

established in the literature [2, 6]. We then show how to estimate zr with no bias and how to

construct confidence intervals, which can be used to compare the diversities of different com-

munities. After this, we derive a simple formula for the corresponding effective number of spe-

cies and discuss its estimation. Finally, we compare it to HCDT entropy and Hurlbert’s index

on a real-world example of under-sampled tropical forest to illustrate its decisive advantage

when applied to this type of data.

1 Methods

1.1 Generalized Simpson’s entropy

Let ℓ1, ℓ2, . . ., ℓS be the species in a community, and let ps be the proportion of individuals

belonging to species ℓs. Necessarily, 0� ps� 1 and
PS

s¼1
ps ¼ 1. We can interpret ps as the

probability of seeing an individual of species ℓs when sampling one individual from this com-

munity. Generalized Simpson’s entropy is a family of diversity indices defined by

zr ¼
XS

s¼1

psð1 � psÞ
r
; r ¼ 1; 2; . . . : ð1Þ

The parameter r is called the order of zr. Note that, as r increases, zr gives more relative weight

to rare species than to more common ones. Note further that 0� zr� 1. In fact, zr is the proba-

bility that the (r + 1)st observation will be of a species that has not been observed before.

Generalized Simpson’s entropy was introduced as part of a larger class in [17] and was fur-

ther studied in [18]. The name comes from the fact that 1 − z1 corresponds to Simpson’s index

as defined in [5]. A major advantage to working with this family is that there exists an unbiased

estimator of zr whenever r is strictly less than the sample size. While a similar result holds for

Hurlbert’s index, this is not the case with most popular diversity indices including HCDT

entropy and Rényi’s entropy, which do not have unbiased estimators. We now turn to the

question of when and why generalized Simpson’s entropy is a good measure of diversity.

1.2 Axioms for a measure of diversity

Historically, measures of diversity have been defined as functions mapping the proportions

p1, p2, . . ., pS into the real line, and satisfying certain axioms. We write H(p1, p2, . . ., pS) to

denote a generic function of this type. We begin with three of the most commonly assumed

axioms. The first two are from Rényi [6] after Faddeev [19].

Axiom 1 (Symmetry) H(p1, p2, . . ., pS) must be a symmetric function of its variables.
This means that no species can have a particular role in the measure.

The generalized Simpson’s entropy is a measure of biodiversity
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Axiom 2 (Continuity) H(p1, p2, . . ., pS) must be a continuous function of the vector
(p1, p2, . . ., pS).

This ensures that a small change in probabilities yields a small change in the measure. In

particular, two communities differing by a species with a probability very close to 0 have

almost the same diversity.

Axiom 3 (Evenness) For a fixed number of species S, the maximum diversity is achieved
when all species probabilities are equal, i.e.,

Hðp1; p2; . . . ; pSÞ � Hð1=S; 1=S; . . . ; 1=SÞ: ð2Þ

This axiom was called evenness by Gregorius [20]. It means that the most diverse commu-

nity of S species is the one where all species have the same proportions.

We will give a more restrictive version of this axiom. Toward this end, following Patil and

Taillie [2], we define a transfer of probability. This is an operation that consists of taking two

species with ps< pt and modifying these probabilities to increase ps by h> 0 and decrease pt
by h, such that we still have ps + h� pt − h. In other words, some individuals of a more com-

mon species are replaced by ones of a less common species, but in such a way that the order of

the two species does not change.

Axiom 4 (Principle of transfers) Any transfer of probability must increase diversity.

The principle of transfers comes from the literature of inequality [21]. It is clear that this

axiom is stronger than the axiom of evenness: if any transfer increases diversity, then, necessar-

ily, the maximum value is reached when no more transfer is possible, i.e. when all proportions

are equal.

Generalized Simpson’s entropy belongs to an important class of diversity indices, which are

called trace-form entropies in statistical physics and dichotomous diversity indices in [2]. This

class consists of indices of the form Hðp1; p2; . . . ; pSÞ ¼
PS

s¼1
psIðpsÞ, where I(p) is called the

information function. Indices of this type were studied extensively in [2] and [20]. I(p) defines

the amount of information [4], or uncertainty [6], or surprise [22]. All of these terms can be

taken as synonyms; they get at the idea that I(p) measures the rarity of individuals from a spe-

cies with proportion p [2]. This discussion leads to the following axiom.

Axiom 5 (Decreasing information) I(p) must be a decreasing function of p on the interval
(0, 1] and I(1) = 0.

This can be interpreted to mean that observing an individual from an abundant species

brings less information than observing one from a rare species, and if an individual is observed

from a species that has probability 1, then this observation brings no information at all.

Patil and Taillie [2] showed that Axiom 5 ensures that adding a new species increases diver-

sity. They also showed that both the principle of transfers and the axiom of decreasing infor-

mation are satisfied if the function g(p) = pI(p) is concave on the interval [0, 1]. However, for

generalized Simpson’s entropy,

gðpÞ ¼ pð1 � pÞr; p 2 ½0; 1� ð3Þ

is not a concave function of p if r> 1. In fact, for r> 1 generalized Simpson’s entropy does not

satisfy the principle of transfers. For this reason Gregorius [20], in a study of many different

entropies, did not retain it. However, we will show that generalized Simpson’s entropies satisfy

a weaker version of the principle of transfers, and are, nevertheless, useful measures of

diversity.

The generalized Simpson’s entropy is a measure of biodiversity
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1.3 The generalized Simpson’s entropy is a measure of diversity

It is easy to see that generalized Simpson’s entropy always satisfies Axioms 1, 2 and 5, but, as

we have discussed, it does not satisfy Axiom 4. However, we will show that it satisfies a weak

version of it and that it satisfies Axiom 3 for a limited, but wide range of orders r.
Axiom 6 (Weak principle of transfers) Any transfer of probability must increase diversity as

long as the sum of the probabilities of the concerned species is below a certain threshold, i.e., the
principle of transfers holds so long as

ps þ pt � T for some 0 < T � 1: ð4Þ

We now give our results about the properties of generalized Simpson’s entropy. The proofs

are in S1 Appendix.

Proposition 1Generalized Simpson’s entropy of order r respects the weak principle of transfers
with T ¼ 2

rþ1
.

Proposition 2 Generalized Simpson’s entropy of order r respects the evenness axiom if r�
S − 1.

In light of Proposition 2, we will limit the order to r = 1, 2, . . ., (S − 1). In this case, general-

ized Simpson’s entropy satisfies Axioms 1–3, and can be regarded as a measure of diversity.

Moreover, it satisfies Axiom 5 and the weak principle of transfers up to T ¼ 2

rþ1
� 2

S. Thus, a

transfer of probability increases diversity, except between very abundant species.

1.4 Estimation

In practice, the proportions, (p1, p2, . . ., pS), are unknown and, hence, the value of generalized

Simpson’s entropy as well as any other diversity index is unknown and can only be estimated

from data. For this purpose, assume that we have a random sample of n individuals from a

given community. The assumption that we have a random sample, i.e. that the observations

are independent and identically distributed, may be unrealistic in some situations. However,

most estimators rely on this assumption, and appropriate sampling design is the simplest solu-

tion to obtain independent and identically distributed data. See [23] for a review of these issues

in the context of forestry. In principle, the assumption of a random sample implies that either

the population is infinite, or that the sampling is done with replacement. In practice, the popu-

lation is finite and sampling in ecological studies is usually performed without replacement.

However, when the sample size is much smaller than the population, the dependence intro-

duced by sampling from a finite population without replacement is negligible and can be

ignored.

Let ns be the number of individuals sampled from species ℓs, and note that n ¼
PS

s¼1
ns. We

can estimate ps by p̂s ¼ ns=n. A naive estimator of zr is given by the so-called “plug-in” estima-

tor
PS

s¼1
p̂sð1 � p̂sÞ

r
. Unfortunately, this may have quite a bit of bias. However, for 1� r�

(n − 1), an unbiased estimator of zr exists and is given by

Zr ¼
nrþ1½n � r � 1�!

n!

XS

s¼1

p̂s
Yr� 1

j¼0

1 � p̂s �
j
n

� �

; ð5Þ

see [17]. There it is shown that Zr is a uniformly minimum variance unbiased estimator

(umvue) for zr when 1� r� (n − 1).

Note that the sum in Eq (5) ranges over all of the species in the community. This may

appear impractical since we generally do not know the value of S. However, for any species ℓs
that is not observed in our sample, we have p̂s ¼ 0, and we do not need to include it in the

sum. Assume that we have observed K� S different species in the sample and that these species

The generalized Simpson’s entropy is a measure of biodiversity
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are ‘
0

1
; ‘
0

2
; . . . ; ‘

0

K . For each s = 1, 2, . . ., K, let n0s be the number of individuals from species ‘
0

s

sampled, and let p̂0s ¼ n0s=n be the estimated proportion of species ‘
0

s. In this case we can write

Zr ¼
nrþ1½n � r � 1�!

n!

XK

s¼1

p̂0s
Yr� 1

j¼0

1 � p̂0s �
j
n

� �

: ð6Þ

With a few simple algebraic steps, we can rewrite this in the form

Zr ¼
XK

s¼1

p̂0s
Yr

j¼1

1 �
n0s � 1

n � j

� �

; ð7Þ

which we have found to be more tractable for computational purposes.

In [17] and [18] it is shown that Zr is consistent and asymptotically normal. These facts can

be used to construct asymptotic confidence intervals. First, define the (K − 1) × (K − 1) dimen-

sional matrix given by

Ŝ ¼

p̂0
1
ð1 � p̂0

1
Þ � p̂0

1
p̂0

2
� � � � p̂0

1
p̂0K� 1

� p̂0
2
p̂0

1
p̂0

2
ð1 � p̂0

2
Þ � � � � p̂0

2
p̂0K� 1

� � � � � � � � � � � �

� p̂0K� 1
p̂0

1
� p̂0K� 1

p0
2
� � � p̂0K� 1

ð1 � p̂0K� 1
Þ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

ð8Þ

and the (K − 1) dimensional column vector ĥr , where for each j = 1, . . ., (K − 1) the jth compo-

nent of ĥr is given by

1 � p̂0j
� �r

þ rp̂0j 1 � p̂0j
� �r� 1

� 1 � p̂0K
� �r

� rp̂0K 1 � p̂0K
� �r� 1

: ð9Þ

When there exists at least one s with ps 6¼ 1/S (i.e. we do not have a uniform distribution)

then an asymptotic (1 − α)100% confidence interval for zr is given by

Zr � za=2

ŝrffiffiffi
n
p ; ð10Þ

where

ŝr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ĥTr Ŝĥr
q

ð11Þ

is the estimated standard deviation, ĥTr is the transpose of ĥr , and zα/2 is a number satisfying

P(Z> zα/2) = α/2 where Z* N(0, 1) is a standard normal random variable. Methods for evalu-

ating Zr and ŝr are available in the package EntropyEstimation [24] for R [25]. For details

about the confidence interval see S1 Appendix.

1.5 Comparing distributions

In many situations it is important not only to estimate the diversity of one community, but to

compare the diversities of two different communities. Toward this end, we discuss the con-

struction of confidence intervals for the difference between the generalized Simpson’s entro-

pies of two communities.

Fix an order r and let z
ð1Þ

r and z
ð2Þ

r be the generalized Simpson’s entropies of the first and sec-

ond community respectively. To estimate these, assume that we have a random sample of size

The generalized Simpson’s entropy is a measure of biodiversity
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n1 from the first community and a random sample of size n2 from the second community.

Assume further that these two samples are independent of each other and that r� (min{n1,

n2} − 1), where min{n1, n2} is the minimum of n1 and n2. If both communities satisfy the con-

ditions given in Section 1.4, an asymptotic (1 − α)100% confidence interval for the difference

z
ð1Þ

r � z
ð2Þ

r is given by

Zð1Þr � Z
ð2Þ
r

� �
� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝð1Þr
� �2

n1

þ
ŝð2Þr
� �2

n2

s

; ð12Þ

where Zð1Þr and Zð2Þr are the estimates of z
ð1Þ

r and z
ð2Þ

r and ŝð1Þr and ŝð2Þr are the estimated standard

deviations as in Eq (11).

In practice, it is often not enough to look at only one diversity index. For this reason we

may want to look at an entire profile of generalized Simpson’s entropies. This can be done as

follows. Fix any positive integer v� (min{n1, n2} − 1). In order for zv to be a reasonable diver-

sity estimator, we also require v� (S − 1). For each r = 1, 2, . . ., vwe can estimate Zð1Þr , Zð2Þr ,

and the corresponding confidence interval. Looking at these for all values of r gives a pointwise

confidence envelope. We can now see if the two communities have statistically significant dif-

ferences in the amount of diversity by seeing if zero is in the envelope or not. If it is generally

in the envelope then the differences are not significant, and if it is generally outside of the enve-

lope then the differences are significant.

1.6 Effective number of species

The effective number of species [7] is the number of equiprobable species that would yield the

same diversity as a given distribution [26]. It is a measure of diversity sensu sticto [8]. We will

write entropy for zr and diversity for its effective number, which we denote by rDz. To derive
rDz we assume

zr ¼
X
rDz

s¼1

1
rDz

1 �
1
rDz

� �r

; ð13Þ

and then simple algebra yields

rDz ¼
1

1 � z
1
r
r

: ð14Þ

Note that Eq (13) assumes that rDz is an integer, while in Eq (14) it is generally not an integer.

This is not an issue because Eq (13) is just a formalism used to derive Eq (14). A more devel-

oped argumentation can be found in Appendix B of [20].

Since the function f(t) = 1/(1 − t1/r), t 2 [0, 1] is monotonically increasing, we can transform

confidence intervals for zr into confidence intervals for rDz as follows. If (L, U) is a (1 − α)

100% confidence interval for zr then (f(L), f(U)) is a (1 − α)100% confidence interval for rDz. It

is important to note that any inference based on such confidence intervals for rDz is equivalent

to inference based on the original confidence interval for zr.

2 Example data and results

In this section we apply our methodology to estimate and compare the diversities of two 1-ha

plots (#6 and #18) of tropical forest in the experimental forest of Paracou, French Guiana [27].

Respectively 641 and 483 trees with diameter at breast height over 10 cm were inventoried.

The data is available in the entropart package for R.

The generalized Simpson’s entropy is a measure of biodiversity
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In the data, we observe 147 and 149 species from plots 6 and 18 respectively. However, spe-

cies may not have been sampled and we must adjust these values. Jackknives tend to be good

estimators of richness, see [28]. We use a jackknife of order 2 for plot 6 and one of order 3 for

plot 18: the choice of the optimal order follows both [28] and [29]. The estimated richness is,

respectively, 254 and 309 species. For this reason we estimate generalized Simpson’s entropy

up to order r = 253. This, along with a 95% confidence envelope is given in Fig 1a.

The generalized Simpson’s diversity profiles along with a 95% confidence envelope are

given in Fig 1b. These give more intuitive information since they represent the effective num-

bers of species. Their values at r = 1 are given, respectively, by 39 and 46 species. Increasing val-

ues of r give more importance to rare species, which leads to the increase in the effective

number of species seen in the graph.

Plot 18 is clearly more diverse than plot 6, with a fairly stable difference of between 15 and

19 effective species. In Fig 2 the difference between the entropies is plotted with its 95% confi-

dence envelope to test it against the null hypothesis of zero difference. Since zero is never in

this envelope, we conclude that plot 18 is significantly more diverse than plot 6.

3 Discussion

3.1 Interpretation

Generalized Simpson’s entropy of order r can be interpreted as the average information

brought by the observation of an individual. Its information function I(p) = (1 − p)r represents

the probability of not observing a single individual of a species with proportion p in a sample

of size r. Thus I is an intuitive measure of rarity.

Olszewski [30] (see also [31]) interpreted zr as the probability that the individual sampled at

rank (r + 1) belongs to a previously unobserved species in a species accumulation curve, i.e.

the slope of the curve at rank (r + 1). A related interpretation is as follows. If X is the number

of species observed exactly once in a sample of size (r + 1), then zr = E[X]/(r + 1).

These interpretations are not limited to orders r< S. However, when r� S, zr is no longer a

reasonable measure of diversity. In particular, in this case, it may not be maximized at the uni-

form distribution, which could lead the effective number of species, rDz, to be greater than the

actual number of species.

Fig 1. Generalized Simpson’s entropy and diversity profiles. (a) entropy and (b) diversity profiles of Paracou plots 6 (solid, green lines)

and 18 (dotted, red lines). The bold lines represent the estimated values, surrounded by their 95% confidence envelopes.

doi:10.1371/journal.pone.0173305.g001
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3.2 HCDT entropy

In this section we compare our results to those based on the more standard HCDT entropy,

which is given by

qT ¼
PS

s¼1
pqs � 1

1 � q
; q � 0; ð15Þ

where, for q = 1, this is interpreted by its limiting value as 1T ¼ �
PS

s¼1
ps logps. The effective

number of species for HCDT entropy was derived in [7]. It is given by

qDT ¼
XS

s¼1

pqs

 !1=ð1� qÞ

; q � 0; ð16Þ

where, for q = 1, this is interpreted by its limiting value as qDT ¼ e1T . We call this quantity

HCDT diversity, although in the literature it is often called Hill’s diversity number. For our

data, plots of qDT for q 2 [0, 2] along with a 95% confidence envelope are given in Fig 3a. Here
qDT was estimated using the jackknife-unveiled estimator of [16] and the confidence envelope

was estimated using bootstrap.

It is easy to see that the importance of rare species increases for HCDT entropy as q
decreases. For comparison, the importance of rare species for generalized Simpson’s entropy

increases as r increases. Note that 2T = z1. To see what values of q in HCDT entropy correspond

to other values of r for generalized Simpson’s entropy, we can find when rDz = qDT. Since we

can only use zr up to r = S − 1 it is of interest to find which value of q corresponds to this value.

For our data we find that in plot 6 q = 0.5 corresponds to r = 253 and in plot 18 q = 0.55 corre-

sponds to r = 308.

The main difficulty in working with HCDT entropy is that its estimators have quite a lot of

bias, especially for smaller values of q [16]. This is illustrated in Fig 3a, where we see that the

Fig 2. Difference between the generalized Simpson’s entropy of plots 6 and 18 with their 95%

confidence envelope. The horizontal dotted line represents the null hypothesis of identical diversity. Since it

is always outside of the confidence envelope, identical diversity is rejected.

doi:10.1371/journal.pone.0173305.g002
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confidence intervals of the estimated values of the HCDT diversity of plots 6 and 18 have sig-

nificant overlap up to q = 0.75.

Bias is not an issue with generalized Simpson’s entropy, which can be estimated with no

bias, regardless of the sample size (although its precision does depend on the sample size, see

Eq (10)). The main issue with generalized Simpson’s entropy is that it can only be considered

for orders r� S − 1, and larger values of r correspond to smaller values of q for HCDT entropy.

In our example, the generalized Simpson’s diversity profile can be compared to the part of the

HCDT diversity profile between q = 0.5 and q = 2. Focusing more on rare species is not possi-

ble. HCDT diversity allows that theoretically, but is seriously limited by its estimation issues:

the profile has a wide confidence envelope and is not conclusive below q = 0.75.

On the whole, generalized Simpson’s entropy allows for a more comprehensive comparison

of diversity profiles. If richness were greater, higher orders of generalized Simpson’s diversity

could be used and estimated with no bias, while low-order HCDT estimation would get more

uncertain [16].

3.3 Hurlbert’s diversity

Another measure of diversity, which is related to generalized Simpson’s entropy, was intro-

duced in [12]. It is given by

kH ¼
XS

s¼1

1 � ð1 � psÞ
k

h i
; k ¼ 1; 2; . . . ; ð17Þ

and corresponds to the expected number of species found in a sample of size k. It is easily veri-

fied that 2H = 1 + z1, and that the higher the value of k, the greater the importance given to

rare species. While there is no simple formula for the corresponding effective number of spe-

cies, an iterative procedure for finding it was developed in [32].

Hurlbert [12] developed an unbiased estimator of kH for all k smaller than the sample size.

This is similar to what is needed to estimate generalized Simpson’s entropy, although, general-

ized Simpson’s entropy also needs r< S for it to be a measure of diversity. We estimate Hurl-

bert’s index for the two plots, convert them into effective numbers of species, and use

bootstrap to get a 95% confidence envelope. The results are given in Fig 3b. We see that the

maximum effective numbers of species are well below those of the generalized Simpson’s

diversity. Thus Hurlbert’s diversity finds fewer rare species, making it a less interesting alterna-

tive for our purpose.

Fig 3. (a) HCDT and (b) Hurlbert’s diversity profiles of Paracou plots 6 (solid, green lines) and 18 (dotted, red lines). The bold lines

represent the estimated values, surrounded by their 95% confidence envelope (obtained by 1000 bootstraps).

doi:10.1371/journal.pone.0173305.g003
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4 Conclusion

Generalized Simpson’s entropy is a measure of diversity respecting the classical axioms when

r< S and has a simple formula to transform it into an effective number of species. It faces sev-

eral issues that limit its use. Specifically, it only makes sense when applied to a single taxocene

and its estimator has nice properties only under the assumption of random sampling. How-

ever, these issues are shared with all of the other measures of diversity discussed here and

many, if not most, of the ones available in the literature. Further, generalized Simpson’s

entropy has a decisive advantage over other such measures: it has an easy-to-calculate uni-

formly minimum variance unbiased estimator, which is consistent and asymptotically normal.

These properties make it a useful tool for estimating diversity and for comparing hyper-

diverse, poorly sampled communities. R code to reproduce the examples in the paper, based

on the packages EntropyEstimation and entropart [22], is given in S2 Appendix. All data are

available in the entropart package.

Supporting information

S1 Appendix. Proofs.

(PDF)

S2 Appendix. R code. This code allows for the reproduction of all examples and figures in this

article.

(PDF)

Author Contributions

Conceptualization: ZZ MG EM.

Data curation: EM MG.

Formal analysis: MG EM GL ZZ.

Investigation: MG EM GL ZZ.

Methodology: MG EM GL ZZ.

Software: MG EM.

Supervision: ZZ.

Validation: MG EM GL ZZ.

Visualization: MG EM.

Writing – original draft: MG EM.

References
1. Ricotta C. Through the jungle of biological diversity. Acta Biotheoretica. 2005; 53(1):29–38. doi: 10.

1007/s10441-005-7001-6 PMID: 15906141

2. Patil GP, Taillie C. Diversity as a concept and its measurement. Journal of the American Statistical

Association. 1982; 77(379):548–561. doi: 10.2307/2287712

3. Beck J, Schwanghart W. Comparing measures of species diversity from incomplete inventories: an

update. Methods in Ecology and Evolution. 2010; 1(1):38–44. doi: 10.1111/j.2041-210X.2009.00003.x

4. Shannon CE. A Mathematical Theory of Communication. The Bell System Technical Journal. 1948;

27:379–423, 623–656. doi: 10.1002/j.1538-7305.1948.tb01338.x

5. Simpson EH. Measurement of diversity. Nature. 1949; 163(4148):688. doi: 10.1038/163688a0

The generalized Simpson’s entropy is a measure of biodiversity

PLOS ONE | DOI:10.1371/journal.pone.0173305 March 7, 2017 10 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0173305.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0173305.s002
http://dx.doi.org/10.1007/s10441-005-7001-6
http://dx.doi.org/10.1007/s10441-005-7001-6
http://www.ncbi.nlm.nih.gov/pubmed/15906141
http://dx.doi.org/10.2307/2287712
http://dx.doi.org/10.1111/j.2041-210X.2009.00003.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1038/163688a0
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