C. Lister and C. Dean, Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana, The Plant Journal, vol.4, issue.4, pp.745-750, 1993.
DOI : 10.1046/j.1365-313X.1993.04040745.x

C. Alonso-blanco, A. Peeters, M. Koornneef, C. Lister, and C. Dean, Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population, The Plant Journal, vol.6, issue.2, pp.259-271, 1998.
DOI : 10.1046/j.1365-313X.1995.08050785.x

G. Jander, J. Cui, B. Nhan, N. Pierce, and F. Ausubel, The TASTY Locus on Chromosome 1 of Arabidopsis Affects Feeding of the Insect Herbivore Trichoplusia ni, PLANT PHYSIOLOGY, vol.126, issue.2, pp.890-898, 2001.
DOI : 10.1104/pp.126.2.890

V. Lambrix, M. Reichelt, T. Mitchell-olds, D. Kliebenstein, and J. Gershenzon, The Arabidopsis Epithiospecifier Protein Promotes the Hydrolysis of Glucosinolates to Nitriles and Influences Trichoplusia ni Herbivory, THE PLANT CELL ONLINE, vol.13, issue.12, pp.2793-2807, 2001.
DOI : 10.1105/tpc.13.12.2793

D. Kliebenstein, D. Pedersen, B. Barker, and T. Mitchell-olds, Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana, Genetics, vol.161, pp.325-332, 2002.

J. Kroymann, S. Donnerhacke, D. Schnabelrauch, and T. Mitchell-olds, Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus, Proceedings of the National Academy of Sciences, vol.100, issue.Supplement 2, pp.14587-14592, 2003.
DOI : 10.1073/pnas.1734046100

Z. Zhang, J. Ober, and D. Kliebenstein, The Gene Controlling the Quantitative Trait Locus EPITHIOSPECIFIER MODIFIER1 Alters Glucosinolate Hydrolysis and Insect Resistance in Arabidopsis, THE PLANT CELL ONLINE, vol.18, issue.6, pp.1524-1536, 2006.
DOI : 10.1105/tpc.105.039602

D. Kliebenstein, J. Kroymann, and T. Mitchell-olds, The glucosinolate???myrosinase system in an ecological and evolutionary context, Current Opinion in Plant Biology, vol.8, issue.3, pp.264-271, 2005.
DOI : 10.1016/j.pbi.2005.03.002

C. Grubb and S. Abel, Glucosinolate metabolism and its control, Trends in Plant Science, vol.11, issue.2, pp.89-100, 2006.
DOI : 10.1016/j.tplants.2005.12.006

B. Halkier and J. Gershenzon, BIOLOGY AND BIOCHEMISTRY OF GLUCOSINOLATES, Annual Review of Plant Biology, vol.57, issue.1, pp.303-333, 2006.
DOI : 10.1146/annurev.arplant.57.032905.105228

D. Kliebenstein, J. Gershenzon, and T. Mitchell-olds, Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds, Genetics, vol.159, pp.359-370, 2001.

R. Mithen, C. J. Lister, C. Dean, and C. , Genetics of aliphatic glucosinolates. III. Side chain structure of aliphatic glucosinolates in Arabidopsis thaliana, Heredity, vol.74, issue.2, pp.210-215, 1995.
DOI : 10.1038/hdy.1995.29

D. Kliebenstein, V. Lambrix, M. Reichelt, J. Gershenzon, and T. Mitchell-olds, Gene Duplication in the Diversification of Secondary Metabolism: Tandem 2-Oxoglutarate-Dependent Dioxygenases Control Glucosinolate Biosynthesis in Arabidopsis, THE PLANT CELL ONLINE, vol.13, issue.3, pp.681-693, 2001.
DOI : 10.1105/tpc.13.3.681

R. Magrath, F. Bano, M. Morgner, I. Parkin, and A. Sharpe, Genetics of aliphatic glucosinolates. I. Side chain elongation in Brassica napus and Arabidopsis thaliana, Heredity, vol.72, issue.3, pp.290-299, 1994.
DOI : 10.1038/hdy.1994.39

H. Campos-de-quiros, R. Magrath, D. Mccallum, J. Kroymann, and D. Schnabelrauch, ??-Keto acid elongation and glucosinolate biosynthesis in Arabidopsis thaliana, TAG Theoretical and Applied Genetics, vol.101, issue.3, pp.429-437, 2000.
DOI : 10.1007/s001220051500

J. Kroymann, S. Textor, J. Tokuhisa, K. Falk, and S. Bartram, A Gene Controlling Variation in Arabidopsis Glucosinolate Composition Is Part of the Methionine Chain Elongation Pathway, PLANT PHYSIOLOGY, vol.127, issue.3, pp.1077-1088, 2001.
DOI : 10.1104/pp.010416

D. Kliebenstein, J. Kroymann, P. Brown, A. Figuth, and D. Pedersen, Genetic Control of Natural Variation in Arabidopsis Glucosinolate Accumulation, PLANT PHYSIOLOGY, vol.126, issue.2, pp.811-825, 2001.
DOI : 10.1104/pp.126.2.811

O. Koroleva, A. Davies, R. Deeken, M. Thorpe, and A. Tomos, Identification of a New Glucosinolate-Rich Cell Type in Arabidopsis Flower Stalk, Plant Physiology, vol.124, issue.2, pp.599-608, 2000.
DOI : 10.1104/pp.124.2.599

H. Husebye, S. Chadchawan, P. Winge, and O. Thangstad, Guard Cell- and Phloem Idioblast-Specific Expression of Thioglucoside Glucohydrolase 1 (Myrosinase) in Arabidopsis, PLANT PHYSIOLOGY, vol.128, issue.4, pp.1180-1188, 2002.
DOI : 10.1104/pp.010925

O. Thangstad, B. Gilde, S. Chadchawan, M. Seem, and H. Husebye, Cell Specific, Cross-Species Expression of Myrosinases in Brassica Napus, Arabidopsis Thaliana and Nicotiana Tabacum, Plant Molecular Biology, vol.54, issue.4, pp.597-611, 2004.
DOI : 10.1023/B:PLAN.0000038272.99590.10

C. Barth and G. Jander, Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense, The Plant Journal, vol.136, issue.4, pp.549-562, 2006.
DOI : 10.1111/j.1365-313X.2006.02716.x

U. Wittstock and B. Halkier, Glucosinolate research in the Arabidopsis era, Trends in Plant Science, vol.7, issue.6, pp.263-270, 2002.
DOI : 10.1016/S1360-1385(02)02273-2

A. Raybold and C. Moyes, The ecological genetics of aliphatic glucosinolates, Heredity, vol.91, issue.4, pp.383-391, 2001.
DOI : 10.1046/j.1570-7458.1999.00465.x

A. Ratzka, H. Vogel, D. Kliebenstein, T. Mitchell-olds, and J. Kroymann, Disarming the mustard oil bomb, Proceedings of the National Academy of Sciences, vol.99, issue.17, pp.11223-11228, 2002.
DOI : 10.1073/pnas.172112899

U. Wittstock, N. Agerbirk, E. Stauber, C. Olsen, and M. Hippler, Successful herbivore attack due to metabolic diversion of a plant chemical defense, Proceedings of the National Academy of Sciences, vol.101, issue.14, pp.4859-4864, 2004.
DOI : 10.1073/pnas.0308007101

M. Benderoth, S. Textor, A. Windsor, T. Mitchell-olds, and J. Gershenzon, Positive selection driving diversification in plant secondary metabolism, Proceedings of the National Academy of Sciences, vol.103, issue.24, pp.9118-9123, 2006.
DOI : 10.1073/pnas.0601738103

M. Tuinstra, G. Ejeta, and P. Goldsbrough, Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci, TAG Theoretical and Applied Genetics, vol.95, issue.5-6, pp.1005-1011, 1997.
DOI : 10.1007/s001220050654

R. Mauricio and M. Rausher, Experimental Manipulation of Putative Selective Agents Provides Evidence for the Role of Natural Enemies in the Evolution of Plant Defense, Evolution, vol.51, issue.5, pp.1435-1444, 1997.
DOI : 10.2307/2411196

R. Mauricio, Cost of Resistance to Natural Enemies in Field Populations of the Annual Plant Arabidopsis thaliana, The American Naturalist, vol.151, issue.1, pp.20-28, 1998.
DOI : 10.2307/2463290

R. Handley and B. Ekbom, Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana, Ecological Entomology, vol.74, issue.3, pp.284-292, 2005.
DOI : 10.1007/BF00345421

V. Symonds, A. Godoy, T. Alconada, J. Botto, and T. Juenger, Mapping Quantitative Trait Loci in Multiple Populations of Arabidopsis thaliana Identifies Natural Allelic Variation for Trichome Density, Genetics, vol.169, issue.3, pp.1649-1658, 2005.
DOI : 10.1534/genetics.104.031948

R. Mauricio, Ontogenetics of QTL: the genetic architecture of trichome density over time in Arabidopsis thaliana, Genetica, vol.74, issue.1-2, pp.75-85, 2005.
DOI : 10.1007/s10709-002-2714-9

T. Mitchell-olds and D. Pedersen, The molecular basis of quantitative genetic variation in central and secondary metabolism in Arabidopsis, Genetics, vol.149, pp.739-747, 1998.

S. Chadchawan, J. Bishop, O. Thangstad, A. Bones, and T. Mitchell-olds, Arabidopsis cDNA Sequence Encoding Myrosinase, Plant Physiology, vol.103, issue.2, pp.671-672, 1993.
DOI : 10.1104/pp.103.2.671

J. Xue, M. Jorgensen, U. Pihlgren, and L. Rask, The myrosinase gene family in Arabidopsis thaliana: gene organization, expression and evolution, Plant Molecular Biology, vol.191, issue.5, pp.911-922, 1995.
DOI : 10.1007/BF00037019

J. Zhang, B. Pontoppidan, J. Xue, L. Rask, and J. Meijer, The third myrosinase gene TGG3 in Arabidopsis thaliana is a pseudogene specifically expressed in stamen and petal, Physiologia Plantarum, vol.29, issue.1, pp.25-34, 2002.
DOI : 10.1023/A:1004381129991

B. Field, G. Cardon, M. Traka, J. Botterman, and G. Vancanneyt, Glucosinolate and Amino Acid Biosynthesis in Arabidopsis, PLANT PHYSIOLOGY, vol.135, issue.2, pp.828-839, 2004.
DOI : 10.1104/pp.104.039347

L. Bonnemail, Insect Pests of Crucifers and Their Control, Annual Review of Entomology, vol.10, issue.1, pp.233-258, 1965.
DOI : 10.1146/annurev.en.10.010165.001313

P. Samson and P. Geier, Induction of crop damage by the cabbage white butterfly Pieris rapae (Lepidoptera, Pieridae) on cabbage, Protect Ecol, vol.5, pp.199-233, 1983.

D. Hill, Agricultural insect pests of temperate regions and their control, pp.411-413, 1987.

J. Van-loon, A. Blaakmeer, F. Griepink, T. Van-beek, and L. Schoonhoven, Leaf surface compound fromBrassica oleracea (Cruciferae) induces oviposition byPieris brassicae (Lepidoptera: Pieridae), CHEMOECOLOGY, vol.37, issue.1, pp.39-44, 1992.
DOI : 10.1007/BF01261455

X. Huang and J. Renwick, Relative activities of glucosinolates as oviposition stimulants forPieris rapae andP. napi oleracea, Journal of Chemical Ecology, vol.13, issue.5, pp.1025-1037, 1994.
DOI : 10.1007/BF02059739

E. Städler, J. Renwick, C. Radke, and K. Sachdevgupta, Tarsal contact chemoreceptor response to glucosinolates and cardenolides mediating oviposition in Pieris rape, Physiological Entomology, vol.13, issue.2, pp.175-187, 1995.
DOI : 10.1007/BF01261455

C. Miles, M. Del-campo, and J. Renwick, Behavioral and chemosensory responses to a host recognition cue by larvae of Pieris rapae, Journal of Comparative Physiology A, vol.13, issue.Suppl1, pp.147-155, 2005.
DOI : 10.1007/s00359-004-0580-x

L. Schoonhoven, GUSTATION AND FOODPLANT SELECTION IN SOME LEPIDOPTEROUS LARVAE, Entomologia Experimentalis et Applicata, vol.80, issue.5, pp.555-561, 1969.
DOI : 10.1111/j.1570-7458.1969.tb02553.x

J. Renwick and K. Lopez, Experience-based food consumption by larvae of Pieris rapae: addiction to glucosinolates?, Entomologia Experimentalis et Applicata, vol.91, issue.1, pp.51-58, 1999.
DOI : 10.1046/j.1570-7458.1999.00465.x

J. Renwick, The chemical world of crucivores: lures, treats and traps, Entomologia Experimentalis et Applicata, vol.104, issue.1, pp.35-42, 2002.
DOI : 10.1046/j.1570-7458.2002.00988.x

A. Shelton, R. Cooley, M. Kroening, W. Wilsey, and S. Eigenbrode, Comparative analysis of two rearing procedures for diamond-back moth Lepidoptera plutellidae, J Entomol Sci, vol.26, pp.17-26, 1991.

O. Loudet, S. Chaillou, C. Camilleri, D. Bouchez, and F. Daniel-vedele, Bay-0 ?? Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis, TAG Theoretical and Applied Genetics, vol.104, issue.6-7, pp.1173-1184, 2002.
DOI : 10.1007/s00122-001-0825-9

E. Lander, P. Green, J. Abrahamson, A. Barlow, and M. Daly, MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations, Genomics, vol.1, issue.2, pp.174-181, 1987.
DOI : 10.1016/0888-7543(87)90010-3

R. Buchner, Approach to Determination of HPLC Response Factors for Glucosinolates, Glucosinolates in Rapeseeds: Analytical Aspects, pp.50-58, 1987.
DOI : 10.1007/978-94-009-3615-7_5

P. Brown, J. Tokuhisa, M. Reichelt, and J. Gershenzon, Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana, Phytochemistry, vol.62, issue.3, pp.471-481, 2003.
DOI : 10.1016/S0031-9422(02)00549-6

S. Wang, C. Basten, and Z. Zeng, Windows QTL cartographer 2.5. Department of Statistics, 2001.

J. Van-ooijen, LOD significance thresholds for QTL analysis in experimental populations of diploid species, Heredity, vol.83, issue.5, pp.613-624, 1999.
DOI : 10.1038/sj.hdy.6886230

J. Satagopan, B. Yandell, M. Newton, and T. Osborn, Markov chain Monte Carlo approach to detect polygene loci for complex traits, Genetics, vol.144, pp.805-816, 1996.

J. Kroymann and T. Mitchell-olds, Epistasis and balanced polymorphism influencing complex trait variation, Nature, vol.160, issue.7038, pp.95-98, 2005.
DOI : 10.1093/bioinformatics/btg359

URL : http://hdl.handle.net/11858/00-001M-0000-0012-B169-1