Skip to Main content Skip to Navigation
Journal articles

Conservative interpolation between general spherical meshes

Abstract : An efficient, local, explicit, second-order, conservative interpolation algorithm between spherical meshes is presented. The cells composing the source and target meshes may be either spherical polygons or latitude–longitude quadrilaterals. Second-order accuracy is obtained by piece-wise linear finite-volume reconstruction over the source mesh. Global conservation is achieved through the introduction of a supermesh, whose cells are all possible intersections of source and target cells. Areas and intersections are computed exactly to yield a geometrically exact method. The main efficiency bottleneck caused by the construction of the supermesh is overcome by adopting tree-based data structures and algorithms, from which the mesh connectivity can also be deduced efficiently.The theoretical second-order accuracy is verified using a smooth test function and pairs of meshes commonly used for atmospheric modelling. Experiments confirm that the most expensive operations, especially the supermesh construction, have O(NlogN) computational cost. The method presented is meant to be incorporated in pre- or post-processing atmospheric modelling pipelines, or directly into models for flexible input/output. It could also serve as a basis for conservative coupling between model components, e.g., atmosphere and ocean.
Complete list of metadata
Contributor : Florence Aptel <>
Submitted on : Sunday, May 16, 2021 - 12:26:01 PM
Last modification on : Friday, July 2, 2021 - 10:50:02 AM


Publisher files allowed on an open archive



Evaggelos Kritsikis, Matthias Aechtner, Yann Meurdesoif, Thomas Dubos. Conservative interpolation between general spherical meshes. Geoscientific Model Development, European Geosciences Union, 2017, 10 (1), pp.425-431. ⟨10.5194/gmd-10-425-2017⟩. ⟨hal-03226708⟩



Record views


Files downloads